Yıl: 2020 Cilt: 7 Sayı: 2 Sayfa Aralığı: 724 - 742 Metin Dili: Türkçe DOI: 10.31202/ecjse.692695 İndeks Tarihi: 03-12-2021

Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi

Öz:
Güçlü biyo–aktif ve osteokondüktif özelliklere sahip, kalsiyum fosfat esaslı kemik ikame malzemeleri birçok tıp ve diş hekimliği implant yüzeyinde kaplama malzemesi, kemiğin yeniden oluşumu (rejenerasyonu) için de iskele olarak kullanılırlar. Kısmi iyon ikamesi için hidroksiapatit (HA) kapasitesinden yararlanılarak HA yapısına farklı iyonlar dâhil edilip gelişmiş biyolojik veya fiziko–kimyasal özellikli malzemeler üretilebilir. Yeryüzünde en fazla bulunan element olan silisyum (Si), canlı vücudunda da pek çok etkin özelliğe sahiptir. Bu çalışmanın amacı, hidroksiapatit yapısındaki kısmi Si iyon katkısının osteokondüktif ve osteoindüktif özellikleri nasıl etkilediğine dair bilgilerin güncellenmesidir.
Anahtar Kelime:

The Effects of Silicon Addition to Bioceramic Composition on the Osteoconductive and Osteoinductive Properties

Öz:
Bone replacing Ca–phosphate based materials with strong bioactive and osteoconductive properties are being used in many medical and dental applications as coating materials on implant surfaces and as scaffold for the regeneration of bone. It is possible to produce materials with enhanced biological or physico– chemical properties by doping different suitable ions into hydroxyapatite (HA) structure. Silicon (Si) is the most found element in Earth crust and has many effective properties in living bodies. The main aim of the present study is to supply the current knowledge about apatite materials which contain Si ions and the effect of Si doping into HA structure on osteoconductivite and osteoinductivite features.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Migonney V., History of biomaterials, Wiley & Sons, 2014.
  • [2]. Ratner B., Hoffman A., Schoen F., Lemons J., Biomaterials science, an introduction to materials in medicine, Elsevier, 2004.
  • [3]. Ehrlich H., Biomaterials and biological materials, Marine Biological Materials of Invertebrate Origin, Springer, 2019.
  • [4]. Ring M. E., Dentistry: an illustrated history, Harry N. Abrams INC, 1992.
  • [5]. Hilldevrand H. F., Biomaterials, a history of 7000 years, BioNanoMaterials, 2013, 14(3–4): 119–133.
  • [6]. Becker, M. J., Amer. J. of Archaeology, 1999, 103(1): 103–111.
  • [7]. Wang M., Developing bioactive composite materials for tissue replacement, Biomaterials, 2003, 24: 2133–2151.
  • [8]. Aoki H., Medical applications of hydroxyapatite, Ishiyaku Euro America, Tokyo, 1994.
  • [9]. Ishikawa K., In handbook of bioceramics and their applications, Woodhead Publishing Ltd. London, 2008.
  • [10]. Jack L. F., Materials in dentistry: Principles and applications, Lippincott Williams & Wilkins, 2001.
  • [11]. Shelton W. R. et al., Autograft versus allograft anterior cruciate ligament reconstruction, Arthroscopy, 1997.
  • [12]. Vishwakarma A., Shi S., Sharpe P., Ramalingam M., Stem cell biology and tissue engeering in dental sciences, Academic Press, 2015.
  • [13]. Prodromos C. C., Joyce B. T., Relative strengths of anterior crucide ligament autografts and allografts, Reconstruction and Basic Science: Second Edition, Elsevier, 2018.
  • [14]. Schwartz Z. et al., J. Peridontol., 1996, 67 (9): 918–926.
  • [15]. Sires B. S., Bone allograft material and method, US Patent 5,112, 354, 1992.
  • [16]. Burchardt H., The biology of bone graft repair, clinical orthopedics and related research, 1983.
  • [17]. Heimann R., Surface and Coating Techn., 2013, 233: 27–38.
  • [18]. Mobarakeh G., Kolahreez D., Ramakrishna S., Williams D., Current Opinion in Biomedical Engineering, 2019, 10: 45–50.
  • [19]. Hench L. L., Bioceramics: from concept to clinic, J. of Amer. Ceram. Soc., 1991, 74 (7): 1487–510.
  • [20]. Park J. B., Biomaterials: an introduction, Plenum Press, Newyork, 1979.
  • [21]. Surmenev R. A., Surmeneva M. A., Ivanova A. A., Significance of calcium phosphate coatings fort he enhancement of new bone osteogenesis, Acta Biomaterialia, 2014, 10: 557– 579.
  • [22]. Zhang N. Molenda J. A., Fournelle J. H., Murphy L., Sahai N., Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells, Biomaterials, 2010, 30: 7653–7665.
  • [23]. Hong Y., Fan H., Li B., Liu M., Zhang X., Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics, Mater. Sci. and Eng.: R: Reports, 2010, 70: 225–242.
  • [24]. Daculsi G., LeGeros R. Z., Girimandi G., Soueidan A., LeGeros J., Effect of sintering process of HA/TCP (BCP) bioceramics on microstructure, dissolution and cell proliferation , Key Eng. Mater., 2008, 361–363: 1139–1142.
  • [25]. Ghannam A. E., Bone reconstruction: from bioceramics to tissue engineering, Expert Review of Medical Devices, 2005, 2: 87–101.
  • [26]. Zhang X., Li X., Fan H., Liu X., Bioceramics, Trans Tech Publications Ltd., 2007.
  • [27]. Ibrahim M., Wassefy N. A., Farahat D. S., Biomaterials for oral and dental tissue enginering, Biocompatibility of Dental Biomaterials, 2017, 117–143.
  • [28]. Kammerer P. W., Gabriel M., Al–Navas B., Scholz T., Kirchmaier C. M., Klein M. O., Early implant healing: Promotion of platelet activation and cytokine release by topographical chemical and biomimetical titanium, Clinical Oral Implanting Res., 2012, 23: 504–510.
  • [29]. Sridharan R., Cameron A. R., Kelly D. J., Kearney C. J., O’Brien F. J., Biomaterial based modulation of macropage polarization: A review and suggested design principles, Materials Today, 2015, 18: 313–325.
  • [30]. Tanaka Y., Kucashima K., Saito H., Nagai A., Tsutsumi Y., Doi H., Nomura N., Hanawa T., In vitro short–term platelet adhesion on various metals, J. of Artificial Organs, 2009, 12: 182–186.
  • [31]. Elias C. N., Factors affacting the success of dental implant, implant dentistry, a rapidly evolving practice, Edited by Türkyılmaz Ilser, InTech, Rijeka, Croatia, 2011.
  • [32]. Harrison P., Cramer E. M., Platelet alpha–granules, Blood Reviews, 1993, 1: 52–62. [33]. Togashi A. Y., Castaman S. A., Picolotto A. Y., Garbin E. A., Marginal bone loss around morse taper connection implants in osseointegration period, J. of Biomedical Sci., 2016, 5:3.
  • [34]. Albrektsson T., Johansson C., Osteoinduction, osteoconduction and osseointegration, Euro. Spine J., 2001, 10: 96–101.
  • [35]. LeGeros R. Z., Calcium phosphate–based osteoinductive materials, Chem. Rev., 2008, 108: 4742–4753.
  • [36]. Ha S. W., Weiss D., Weitzmann N., Beck G. R., Chapter 4, Applications of silica based nanomaterials in dental and skeletal biology, Nanobiomaterials in Clinic Dentistry, Micro and Nanotechnologies, 2019: 77–112.
  • [37]. Farid S. B. H., Bioceramics: for materials science and engineering, Woodhead Publishing Series in Biomaterials, 2019, 77–96
  • [38]. Kämmerer P. W., Paiarie V., Schiegritz E., Hagmann S., Alshihri A., Al Nawas B., Vertical osteoconductivity and early bone formation of titanium–zirconium and titanium implants in a subperiosteal rabbit animal model, Clinical Oral Implants Res., 2014, 25(7): 774–780.
  • [39]. Pietak, A. M., Reid J. W., Stott M. J., Sayer M., Silicon substitution in the calcium phosphate bioceramics, Biomaterials, 2007, 28: 4023–4032.
  • [40]. Yu H., Liu, K., Zhang, F. et al. Microstructure and in vitro bioactivity of silicon–substituted hydroxyapatite, Silicon, 2017, 9: 543–553.
  • [41]. Manchon A., Alkhraisat A., Rueda–Rodriguez C., Torres J., Prados–Frutos J. C., Ewald A., Gbureck U., Cabrejos Azama J., Rodriguez–Gonzalez A., Lopez–Cabarcos E., Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone, J. of Biomedical Mater. Res. Part A, 2015, 103: 479–488
  • [42]. Wiens M., Wang X., Schröder H. C., Sclobmacher U., Ushijima H., Müller W. E. G., The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast–like cells, Biomaterials, 2010, 31: 7716–7725.
  • [43]. Alves N. M., Leonar I. B., Azevedo H. S., Reis R. L., Mano J. F., Designing biomaterials based on biomineralization of bone, J. of Mater. Chem., 2010, 20: 2911–2921.
  • [44]. Marks Jr S., Odgren P. R., Structure and development of the skeleton, principles of bone biology, Academic Press, 2002.
  • [45]. Ducy P., Schinke T., Karsenty G., The osteoblast: A sophisticated fibroblast under central surveillance, Science, 2000, 289(5484): 1501–1504.
  • [46]. Bateman J. P., Sadedi F. F., Susin C., Wikesjo W. M., Exploratory study on the effect of osteoactivin on bone formation in the rat critical–size calvarial defect model. J. of Periodontal Res., 2011, 47(2): 243–247.
  • [47]. Parsons A., Ahmed F., Han N., Felfel R., Rudd C. D., Mimicking bone structure and function with structural composite materials, J. of Bionic Eng., 2010, 7: S1–S10.
  • [48]. Fratzl P., Gupta H. S., Paschalis E. P., Roschger P., Structure and mechanical quality of the collagen–mineral nano-composite in bone, J. of Mater. Chem., 2004, 14: 2115–2123.
  • [49]. Neo M., Kaotani S., Nakamura T., Yamamuro T., Ohtsuki C., Kokubo T., Bando Y., A comprative study of ultra structures of the interfaces between four kinds of surface active ceramic and bone, J. of Biomedical Mater. Res., 1992, 26 (11): 1419–1432.
  • [50]. Jiang W., Lim H., Nanocomposites for bone repair and osteointegration with soft tissues, nanocomposites for musculoske letal tissue regenation, Editor: Huinan Liu, Woodhead Publishing, 2016.
  • [51]. http://www.robaid.com/bionics/computation-3d-printing-and-testing-of-bone-inspiredcomposites.htm (Access Date: 21.02.2020).
  • [52]. https://courses.lumenlearning.com/boundless-biology/chapter/bone/(AccessDate: 21.02.2020).
  • [53]. Bonewald L. F., Chapter 313–Cell–cell and cell–matrix interactions in bone, Handbook of Cell Signaling, 2647–2662, 2010.
  • [54]. Manolagas S. C., Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis, 2000, 21: 115-137.
  • [55]. Camacho D. F., Pienta K. J., Cancer Metastasis Rev., 2014, 33(2–3): 545–553.
  • [56]. Brown J. B., Kumbar S. G., Laurencin C. T., Bone tissue engineering, an introduction to materials, 3th Edition, Elsevier Inc., 1194–1214, 2013.
  • [57]. Parvizi J., Gregory K. Kim, Chapter 163, Osteoclasts, High Yield Ortopedics, Philadelphia: Saunders/Elsevier, 337–339, 2010.
  • [58]. Liu P. M., Troczynski T., Tseng W. J., Water–based sol–gel synthesis of hydroxyapatite: process development, Biomaterials, 2001, 13: 1721–1730.
  • [59]. Liu Q., Huang S., Matinlinna J. P., Chen Z., Pan H., Insight into biological apatite: Physiochemical properties and preparation approaches, Biomed Res. Int., 2013, 1–13.
  • [60]. Elliott J. C., Wilson R. M., Dowker S. E. P., Apatite structures, Advances in X–Ray Analysis, 2002, 45: 172–181.
  • [61]. Guo S. L., Chen B. L., Durrani S. A., Chapter 4–Solid–state nuclear track detectors, Handbook of Radioactivity Analysis, 3rd Edition, 233–298, 2012.
  • [62]. Okada M., Matsumoto T., Japanese Dental Sci. Rev., 2015, 51: 85–95.
  • [63]. Cullinane M. C., Einhorn T. A., Chapter 2–Biomechanics of bone, principles of bone biology, Editors: Bilezikian J. P., Raisz L. G., Rodan G. A., Academic Press, 17–32, 1996.
  • [64]. Rey C., Combos C., Drouet C., Glimcher M. J., Bone mineral: update on chemical composition and structure, Osteoporos Int., 2009, 20(6): 1013–1021.
  • [65]. Vallet–Regí, M. and González–Calbet, J. M., Progress in Solid State Chemistry, 2004, 32: 1–31.
  • [66]. Ehrenfest D. M. D. et al., New biomaterials and regenerative medicine strategies in periodontology, Oral Surgery, and Esthetic and Implant Dentistry 2018, BioMed Res. Int., 2019, 2: 1–2.
  • [67]. LeGeros R. Z., Silverstone L. M., Daculsi G., In vitro caries–like lesion formation in Fcontaining tooth enamel, J. of Dental Res., 1983, 62: 138–144.
  • [68]. Zhang X., Cresswell M., Calcium phosphate materials for controlled release systems, Inorganic Controlled Release Techn., 2016, 161–187.
  • [69]. Elias C. N., Factors affecting the success of dental implants, implant dentistry: A rapidly envolving practice, Editor: Türkyılmaz I., Intech, 2011, 319–362.
  • [70]. LeGeros R. Z., Bautista C., LeGeros J. P., Comparative properties of bioactive bone graft materials, Bioceramics, 1995, 8: 81–87.
  • [71]. Silva R. F., Sasso G. R., Cerri E. S., Simoes M., Cerri P. S., Biology of bone tissue: Structure, function, and factors that influence bone cells, BioMedical Res. Int., 2015, 1–17.
  • [72]. Chen Z., Klein T., Murray R. Z., Crawfoed R., Chang J., Wu C., Xiao Y., Osteoimmunomodulation for the development of advanced bone biomaterials, Materials Today, 2015, 1–18.
  • [73]. Rambhia K. J., Ma P. X., Chapter 48–Biomineralisation and bone regeneration, principles of regenerative medicine, 3rd Edition, Academic Press, 853–866, 2019.
  • [74]. Toews G. B., Chapter 11–Macrophages, asthma and copd basic mechanisms and clinical management, Academic Press, 133–143, 2009.
  • [75]. Kinne R. W., Bräuer R., Stuhlmüller B., Palombo–Kinne E., Burmester G. R., Macrophages in rheumatoid arthritis, Arthritis Res., 2000, 2(3): 189–202.
  • [76]. Davies J. E., In vitro modeling of the bone/implant interface, Amer. Assoc. for Anatomy, 1996, 245(2): 426–445.
  • [77]. Kiesewetter, K., Schwartz, Z., Dean, D. D., Boyan, B. D., Critical Reviews in Oral Biology & Medicine, 1996, 7(4), 329–345.
  • [78]. Navarrete R. O., Raines A. L., Sharon L. H., Jung H. P., Hutton D. L., Cochran D. L., Boyan B. D., Schwartz Z., Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age, J. of Bone and Mineral Res., 2012, 27: 1773– 1783.
  • [79]. Villar C., Huynh–Ba G., Mills M. P., Cocran D. L., . Wound healing around dental implants, Endodontic Topics, 2013, 25(1): 44–62.
  • [80]. Kotha M., Kripal K., Bhavanam S. R., Chandrasekaran K., Endosseous integration, EC Dental Science, 2017, 87–98.
  • [81]. Lang N. P., Tonetti N. S., Juvan J. E., Pierre J., Fourmousis I., Hallurd M., Jung R., Laurell L., Salvi G. E., Shafer D., Weber H. P., Immediate implant placement with transmucosal healing in areas of aesthetic priority, Clinical Oral Implants Res., 2007, 18 (2): 188–196.
  • [82]. Fang J., Pengfei L., Xiong L., Fang L., Lu X., Ren F., A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration, Acta Biomaterialia, 2019, 88: 503–513.
  • [83]. Parithimarkalaignan S., Padmanabhan T. V., Osseointegration: An update, J. Indian Prosthodont Soc., 2013, 13(1): 2–6.
  • [84]. Habibovic P., De Groot K., Osteoinductive biomaterials–properties and relevance in bone repair, J of Tissue Eng. and Regenerative Medicine, 2007, 1: 25–32.
  • [85]. Davies J. E., Hosseini M. M., Histodynamics of end osseous wound healing, Bone Eng., 2000, 1–14.
  • [86]. Thorwarth M., Schegel K. A., Wehrhan F., Snous S., Schultze M. S., Acceleration of de novo bone formation following application of autogenous bone to particulated anorganic bovine material in vivo, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 2006, 101(3): 309–316.
  • [87]. Yuan H., Fernandes H., Habibovic P., de Boer J., Barradas A. M., de Ruiter A., Walsh W. R., van Blitterswijk C. A., de Bruijn J. D., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proceedings of the National Academy of Sciences, Sci. USA, 2010 107(31): 13614–13619.
  • [88]. Berglundh T., Abrahamsson I., Lang N. P., Lindhe J., De novo alveolar bone formation adjacent to endosseous implants, Clinical Oral Implants Research., 2003, 14(3): 251–262.
  • [89]. Ghayor C., Weber F. E., Osteoconductive microarchitecture of bone substitutes for bone regeneration revisited, Frontiers in Physiology, 2018, 9: 960.
  • [90]. Dahiya Y. R., Bano S., Mishra S., Application of bone substitutes and its feature prospective in regenerative medicine, biomaterial–supported tissue reconstruction or regeneration, Intechopen, 2019.
  • [91]. Honda M., Kikushima K., Kawanobe Y., Mizumoto N., Bizava M., Enhanced early ostegenic differentiation by silicon substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolsisis route, J. on Mater. Sci.: Mater. in Medicine, 2012, 23: 2923– 2932.
  • [92]. Wu C. T., Chang J., A review of bioactive silicate ceramics, J. of Inorganic Mater., 2013, 28: 29–39.
  • [93]. Wang C., Lin K., Chang J., Sun J., Osteogenesis and angiogenesis induced by porous β– CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways,
  • [94]. Biomaterials, 2013, 34: 64–77.
  • [95]. Götz W., Tobiasch E., Witzleben Z., Schulze M., Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation, Parmaceutics, 2019, 11: 117.
  • [96]. Henstock J. R., Canham L.T., Anderson S. I., Silicon: The evolution of its use in biomaterials Acta Biomaterialia, 2015, 11: 17–26.
  • [97]. Jugdaohsingh R., Silicon and bone health, The J. of Nutrition, Health & Aging, 2007, 11, 99–110.
  • [98]. Rodella L. F., Bonazza V., Labanca M., Lonati C., Rezzani R.., A review of the effects of dietary silicon intake on bone homeostasis and regeneration, The J. of Nutrition, Health & Aging, 2014, 18: 820–826.
  • [99]. Wang X. H., Scröder H. C., Wiens M., Ushijima H., Müller W. E. G., Bio–silica and bio– polyphosposphate: applications in biomedicine (bone formation), Current Opinion in Biotechnology, 2012, 23, 570–578.
  • [100]. Keeting P. E. et al., J. Bone Miner. Res, 1992, 7: 1281–1289.
  • [101]. Xynos I. D., Edgar A. J., Buttery L. D., Hench L. L., Polak J. M., Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin–like growth factor II mRNA expression and protein synthesis, Biochem. and Biophys. Res. Commun., 2000, 276, 461–465.
  • [102]. Szurkowska K., Kolmas J., Hydroxyapatites enriched in silicon–Bioceramic materials for biomedical and pharmaceutical applications, Progress in Nature Sci.: Mater. Int., 2017, 27: 401–409.
  • [103]. Schwarz K., A bound form of silicon in glycosaminoglycans and polyuronides, Proc. Natl. Acad. Sci. USA. 1973, 70(5): 1608–1612.
  • [104]. Hench, L. L., Clark, A. E. and Schaake H. F., J. of Non–Crys. Solids, 1972, 8–10 837.
  • [105]. Bothelho C. M., Brooks R. A., Best S. M., Lopes M. A., Santos J. D., Rushton N., Bonfield W., Human osteoblast response to silicon–substituted hydroxyapatite, J. of Biomedical Mater. Res. A., 2006; 79A: 723–730.
  • [106]. Reffitt D. M., Ogston N., Jugdaohsingh R., Cheung H. F., Evans B. A., Thompson R. P., Powell J. J., Hampson G. N., Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast–like cells in vitro, Bone, 2003, 32: 127–135.
  • [107]. Leventouri T., Bunaciu C. E., PErdkalsis V., Neutron powder diffraction studies of silicon– substituted hydroxyapatite, Biomaterials, 2003, 24: 4205–4211.
  • [108]. Botelho C. M., Bunaciu C.E., Perdkalsis V., J. of Mater. Sci., Mater. Medical., 2002, 13: 1123–1127.
  • [109]. Zou S., Ireland D., Brooks R. A., Ruston N., Best S., The effects of silicate ions on human ostepblast adhesion, proliferation and differentiation, Wiley Inter Science, 123–130, 2008.
  • [110]. Arcas D., Rodriguez C., Regi M., Silicon incorporporation in hydroxyapatite obtained by controlled crystallization, Chem. of Mater., 2004, 16: 2300–2308.
  • [111]. Porter A. E., Patel N., Skepper J. N., Best S. M., Bonfield W., Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomater., 2003, 24, 4609–4620.
  • [112]. Gibson I. R., Best S. M., Bonfield W., Chemical characterization of silicon–substituted hydroxyapatite, Journal of Biomedical Mater. Res., 44, 1999, 422–428.
  • [113]. Palard M., Combes J., Champion E., Foucaud S., Rattner A., Assollant D. B., Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)6-x(SiO4)x(OH)2-x ceramics , Acta Biomaterialia, 5, 2009, 1223–1232.
  • [114]. Camaioni A., Cacciotti I., Campagnolo L., Bianco A., Silicon–substitued hydroxyapatite for biomedical applications, Woodhead Publishing, Cambridge, 343–373, 2015.
  • [115]. Aminian A., Hashjin M.H., Samadikuchcksaraei A., Bakhshi F., Gorjipour F., Farzadi A., Moztarzadeh F., Schmücker M., Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources, Ceram. Int., 2011, 37: 1219– 1229.
  • [116]. Gomes S., Renaudin G., Mesbah A., Jallot E., Bonhomme C., Nedelec M., Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi– technique study, Acta Biomaterialia, 2010, 6: 3264–74.
  • [117]. Yanling Z. et al., Wu C., Chang J., Bioceramics to regulate stem cells and their microenvironment for tissue regeneration, Materials Today, 2019, 24: 41–56.
  • [118]. Zhang D., Hupa M., Hupa L., In situ pH within particle beds of bioactive glasses, Acta Biomaterialia, 2008, 4: 1498–1505.
  • [119]. Fernandes H. R., Gaddam A., Rebelo A., Brazete D., Stan E. G., Ferreira J. M. F., Bioactive glasses and glass–ceramics for healthcare applications in bone regeneration and tissue engineering, Materials (Basel), 2018, 11(12): 2530.
  • [120]. Hench L. L., Andersson O., Bioactive glasses, an introduction to bioceramics, 41–62, 1993.
  • [121]. Zhai W., Lu H., Wu C., Chen L., Lin X., Naoki K., Chen G., Chang J., Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro Acta Biomaterialia, 2013, 8004–8014.
  • [122]. Cao L. H., Yu B. Q., Wu G. S., Su J. C., Study on adulterate sodium silica apatite cement porous scaffolds for bone defect repair, J. of Inorganic Mater., 2011, 26: 591–596.
  • [123]. Xu S. et al., Biomaterials, 2008, 29: 2588–2596.
  • [124]. Varanasi V. G., Leong G. G., Dominia L. M., Jue S. M., Loomer P. M., Marshall G. W., Si and Ca individually and combinatorially target enhanced MC3T3–E1 subclone 4 early osteogenic marker expression, J. of Oral Implantology, 2012, 38: 325–326.
  • [125]. Yamada Y., Inui T., Kinoshita Y., Shigemitsu Y., Honda M., Nakano K., Silicon–containing apatite fiber scaffolds with enhanced mechanical property express osteoinductivity and high osteoconductivity, J. of Asian Ceram. Soc., 2019, 7: 101–108.
  • [126]. Mao Z., Gu Y., Zhang J., Shu W. W., Cui Y., Xu T., Superior biological performance and osteoinductive activity of Si–containing bioactive bone regeneration particles for alveolar bone reconstruction, Ceram. Int., 2020, 46: 353–364.
  • [127]. Ghanaati S. et al., Implantation of silicon dioxide based nanocrystalline hydroxyapatite and pure phase beta tricalcium phosphate bone substitute granules in caprine muscle tissue does not induce new bone formation, Head Face Medical, 2013, 9:1.
  • [128]. Sun C. et al., Development and performance analysis of Si–CaP/fine particulate bone powder combined grafts for bone regeneration, BioMed. Eng. OnLine, 2015, 14: 47.
  • [129]. Wang W., Yeung K. W. K., Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive Mater., 2017, 224–247.
  • [130]. Carlisle M., 7. Silicon, trace elements in human and animal nutrition, Editor: Mertz W., Academic Press, 1986.
  • [131]. Carlisle E. M., Silicon: A possible factor in bone calcification, Science, 1970, 167, 279–280.
  • [132]. Bohner M., Silicon–substituted calcium phosphates–A critical view, Biomaterials, 2009, 30, 6403–6406.
  • [133]. Ravindran S., George A., Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration, Frontiers in Physiology, 2015, 6: 118.
  • [134]. Roh J., Kim J. Y., Choi Y. M., Ha S. M., Kim K. N., Kim K. M., Bone regeneration using a mixture of silicon–substituted coral HA and β-TCP in a rat calvarial bone defect model, Materials, 2016, 2: 97.
  • [135]. Sun J. et al., Comparative study of hydroxyapatite, fluor–hydroxyapatite and Si–substituted hydroxyapatite nanoparticles on osteogenic, osteoclastic and antibacterial ability, RSC Advances, 2019, 9: 16106–16118.
  • [136]. Mumith A. et al., The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants, Plos One, 2020, 15(1): 1–19.
  • [137]. Douard N., Detsch R., Ghodsnia R. C., Damia C., Deisinger U., Champion E., Processing, physico–chemical characterisation and in vitro evaluation of silicon containing β–tricalcium phosphate ceramics, Mater. Sci. and Eng. C, 2011, 31: 531–539.
APA GÜNGÖR F, Karasu B (2020). Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. , 724 - 742. 10.31202/ecjse.692695
Chicago GÜNGÖR Fazilet ERGÖZ,Karasu Bekir Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. (2020): 724 - 742. 10.31202/ecjse.692695
MLA GÜNGÖR Fazilet ERGÖZ,Karasu Bekir Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. , 2020, ss.724 - 742. 10.31202/ecjse.692695
AMA GÜNGÖR F,Karasu B Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. . 2020; 724 - 742. 10.31202/ecjse.692695
Vancouver GÜNGÖR F,Karasu B Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. . 2020; 724 - 742. 10.31202/ecjse.692695
IEEE GÜNGÖR F,Karasu B "Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi." , ss.724 - 742, 2020. 10.31202/ecjse.692695
ISNAD GÜNGÖR, Fazilet ERGÖZ - Karasu, Bekir. "Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi". (2020), 724-742. https://doi.org/10.31202/ecjse.692695
APA GÜNGÖR F, Karasu B (2020). Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. El-Cezerî Journal of Science and Engineering, 7(2), 724 - 742. 10.31202/ecjse.692695
Chicago GÜNGÖR Fazilet ERGÖZ,Karasu Bekir Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. El-Cezerî Journal of Science and Engineering 7, no.2 (2020): 724 - 742. 10.31202/ecjse.692695
MLA GÜNGÖR Fazilet ERGÖZ,Karasu Bekir Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. El-Cezerî Journal of Science and Engineering, vol.7, no.2, 2020, ss.724 - 742. 10.31202/ecjse.692695
AMA GÜNGÖR F,Karasu B Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. El-Cezerî Journal of Science and Engineering. 2020; 7(2): 724 - 742. 10.31202/ecjse.692695
Vancouver GÜNGÖR F,Karasu B Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi. El-Cezerî Journal of Science and Engineering. 2020; 7(2): 724 - 742. 10.31202/ecjse.692695
IEEE GÜNGÖR F,Karasu B "Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi." El-Cezerî Journal of Science and Engineering, 7, ss.724 - 742, 2020. 10.31202/ecjse.692695
ISNAD GÜNGÖR, Fazilet ERGÖZ - Karasu, Bekir. "Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi". El-Cezerî Journal of Science and Engineering 7/2 (2020), 724-742. https://doi.org/10.31202/ecjse.692695