Yıl: 2020 Cilt: 7 Sayı: 2 Sayfa Aralığı: 753 - 762 Metin Dili: İngilizce DOI: 10.31202/ecjse.686845 İndeks Tarihi: 03-12-2021

Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing

Öz:
Hydrostatic journal bearings are recommended for supporting shafts operating at high speeds and under heavy loads in the industry. In the journal bearings, lubricant viscosity decreases with increasing temperature at high rotation speeds and hence, the fluid between the surfaces should be circulated using a pump to cool the lubricant. However, the lubricant supplying between the surfaces at the high flow rate causes the whirl instability and vibrations problems in the bearing-shaft system. These instability problems give rise to significant damage on the system during operating at the high speeds and under heavy loads. As a solution to this problem, it could be suggested to control the variation of the lubricant viscosity concerning the temperature by adding nanoparticle. In the present work, the effects of the lubricant with nanoparticle additives on the load carrying capacity of a hydrostatic journal bearing are theoretically investigated. The fluid film flow between the bearing and rotor surfaces are modelled with Reynolds equation and the viscosity term in Reynold’s equation is defined as a function which depends on the nanoparticle properties. Then, the pressure distribution is obtained with solving the film flow equation and the load capacity is calculated for different nanoparticle parameters using this pressure distribution. The results show that the usage of the lubricant with nanoparticle increases the load performance of the hydrostatic journal bearing and the influences of the nanoparticle size on the load performance is more dominant for high volumetric ratio.
Anahtar Kelime:

Nanoparçacık Katkılı Yağlayıcı Akışkanın Radyal Hidrostatik Yatağın Yük Taşıma Kapasitesine Etkisi

Öz:
Hidrostatik yataklar, endüstride, yüksek hızlarda ve ağır yükler altında çalışan şaftların yataklanması için önerilmektedir. Bu yataklarda, sıcaklığın artması akışkanın viskozitesini düşürmektedir ancak, akışkanın soğutulması için yüzeyler arasındaki akışkan, bir pompa ile devridaim ettirilebilir. Fakat yatak-şaft sistemlerinde, yüzeyler arasına akışkan iletilmesi, dolanım kararsızlıklarına ve titreşim problemlerine sebep olduğu bilinmektedir. Bu kararsızlık problemleri şaftın yüksek hızlarda dönüşü esnasında sisteme önemli hasarlar verebilecek kadar tehlikeli olabilir. Bu probleme çözüm önerisi olarak, yağlayıcı akışkanın viskozitesinin sıcaklığa bağlı değişiminin nanoparçacıklarla kontrol edilmesi önerilebilir. Bu çalışmada da, hidrostatik yataklarda nanoparçacık ilaveli yağlayıcı akışkan kullanımının yük taşıma kapasitesine etkisi teorik olarak araştırılmıştır. Yüzeyler arasındaki akışkan hareketi Reynold’s denklemi ile modellenmiş ve denklem içerisindeki viskozite terimi nanoparçacık özelliklerine bağlı olarak ifade edilmiştir. Bunun ardından, yatak içerisindeki basınç dağılımı Reynold’s denkleminin sayısal çözümü ile elde edilmiş ve bu basınç dağılımı kullanılarak, yatağın yük taşıma kapasitesi, farklı nanoparçacık özellikleri için hesaplanmıştır. Yapılan bu çalışmanın sonuçları, nanoparçacık takviyeli yağlayıcı kullanımının hidrostatik yatakların yük taşıma kapasitesini arttırdığını ve yüksek hacimsel oranlar için nanoparçacık boyutunun performansa etkisinin daha baskın olduğunu göstermiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Rowe W.B., Hydrostatic and Hybrid Bearing Design, 1983, London: Butterworths.
  • [2]. Rowe W.B., Chong FS, Weston W A linearised stability analysis of rigid and flexible rotors in plain hybrid (hydrostatic/hydrodynamic) journal bearings, Proc. Conf. on Vibrations in Rotating Machinery 1984, York.
  • [3]. Tonnesen J., Hansen P.K., Some Experiments on the Steady-State Characteristics of a Cylindrical Fluid-Film Bearing Considering Thermal Effects, Asme Journal of Lubrıcation Technology 1981,103, 107-114.
  • [4]. Loxham J., Hemp J., The application of hydrostatic bearings to high precision machine tools, Prod Eng 1964, 43, 556-568.
  • [5]. Rowe W.B., Koshal D., Stout K.J., Investigation of recessed hydrostatic and slot entry journal bearings for hybrid hydrodynamic and hydrostatic operation, Wear 1977, 43, 55-69.
  • [6]. Cossa K.N., Basic concepts on rheology and application of shear-thickening fluids in protective gear. SN Appl. Sci 2019 1, 1284.
  • [7]. Ghosh M.K., Majumdar B.C., Design of multi-recess hydrostatic oil journal bearings, Tribology International 1980, 13, 73-78.
  • [8]. Yoshimoto S., Rowe W.B., Ives D., A theoretical investigation of the effect of inlet pocket size on the performance of hole entry hybrid journal bearings employing capillary restrictors, Wear 1988, 127, 307-318.
  • [9]. Rana N.K., Gautam S.S., Verma S., Stiffness and damping characteristics of conical multirecess hybrid journal bearing for different load arrangements, SN Applied Sciences 2019, 1, 604.
  • [10]. Dwivedia V.K., Chandb S., Pandey K.N., Effect of number and size of recess on the performance of hybrid (hydrostatic/hydrodynamic) journal bearing. Proced Eng 2013, 51, 810-817.
  • [11]. Kumar V., Sharma S.C., Jain S.C., Journal Motion of Hybrid Journal Bearing Considering Viscosity Variation due to Temperature Change, ASME International Mechanical Engineering Congress and Exposition, Orlando 2005, Florida, USA.
  • [12]. Phalle V.M., Sharma S.C., Jain S.C., Performance analysis of a 2-lobe worn multi-recess hybrid journal bearing system using different flow control devices, Tribol Int 2012, 52, 101- 116.
  • [13]. Peng L., Changhou L., Wei P., Shiyi L., A new method for calculating the static performance of hydrostatic journal bearing, Tribology International 2014, 77, 72-77.
  • [14]. Khatak P., Garg H., Influence of micropolar lubricant on bearings performance: A review, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2012, 226(9):, 775-784.
  • [15]. Rajneesh K., Suresh V., Analysis of Noncircular Hole-Entry Capillary-Compensated Hybrid Journal Bearing with Micropolar Lubrication, Tribology Transactions 2016, 59, 33-43.
  • [16]. Chandra B.K., Sharma S.C., Influence of textured surface on the performance of nonrecessed hybrid journal bearing operating with non-Newtonian lubricant, Tribology International 2016, 95, 221-235.
  • [17]. Kumar V., Gupta K.D., Analysis of Multirecess Hydrostatic Journal Bearing Operating With Micropolar Lubricant, ASME. J. Tribol. 2009, 131(2), 021103.
  • [18]. Shenoy B.S., Binu K.G., Pai R., Rao D.S., Pai R.S., Effect of nanoparticles additives on the performance of an externally adjustable fluid film bearing, Tribology International 2012, 45, 38-42.
  • [19]. Peng X.D., Chen C.H., Kang Y., Chang Y.P., Chang S.Y., Size Effects of SiO2 Nanoparticles as Oil Additives on Tribology of Lubricant, Industrial Lubrication and Tribology 2010, 62, 111-120.
  • [20]. Jiao D., Zheng S., Wang Y., Guan R., Cao B., The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives, Applied Surface Science 2011, 257(13), 5720-5725.
  • [21]. Padgurskas J., Rukuiza R., Prosyčevas I., Kreivaitis R., Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles, Tribology International 2013, 60, 224-232.
  • [22]. Nair K.P., Ahmed M.S., Qahtani S.T.A., Static and Dynamic Analysis of Hydrodynamic Journal Bearing Operating Under Nano Lubricants, International Journal of Nanoparticles 2009, 2, 251-262.
  • [23]. Nicoletti R., The Importance of the Heat Capacity of Lubricants with Nanoparticles in the Static Behaviour of Journal Bearings, Journal of Tribology 2014, 136, 044502.
  • [24]. Binua K.G., Shenoyb B.S., Raoa D.S., Paia R., Static Characteristics of a Fluid film Bearing with TiO2 Based Nanolubricant Using the Modified Krieger–Dougherty Viscosity Model and Couple Stress Model, Tribology International 2014, 75, 69-79.
  • [25]. Yathish K., Binu K., Static Characteristics of Two-Axial Groove Journal Bearing Operating on TiO2 Nanolubricant Using a Temperature Dependent Viscosity Model, Journal of Mechanical Engineering and Automation 2017, 7, 150-154.
  • [26]. Babu K.S., Nair K.P., Rajendrakumar P.K., Computational Analysis of Journal Bearing Operating Under Lubricant Containing Al2O3 and ZnO Nanoparticles, International Journal of Engineering, Science and Technology 2014, 6, 34-42.
  • [27]. Suryawanshi S.R., Pattiwar J.T., Effect of TiO2 Nanoparticles Blended with Lubricating Oil on the Tribological Performance of the Journal Bearing, Tribology in Industry 2018, 40(3), 370-391.
  • [28]. Dal A., Karaçay T., Effects of the surface roughness on the dynamics of a rotor supported by aerostatic bearing, In Proceedings of the World Congress on Engineering 2016, 2, 919-924.
  • [29]. Singh A., Chauhan P., Mamatha T.G., A review on tribological performance of lubricants with nanoparticles additives, Materials Today: Proceedings 2019. https://doi.org/10.1016/j.matpr.2019.07.245
  • [30]. Bhattacharjee B., Chakraborti P., Choudhuri K., Evaluation of the performance characteristics of double-layered porous micropolar fluid lubricated journal bearing, Tribology International 2019, 138, 415-423.
  • [31]. Suryawanshi S.R., Pattiwar J.T., Tribological performance of commercial Mobil grade lubricants operating with titanium dioxide nanoparticle additives, Industrial Lubrication and Tribology 2019, 71, 188-198.
  • [32]. Rowe W.B., Xu S.X., Chong F.S., Weston W., Hybrid journal bearing with particular reference to hole-entry configurations, Tribology International 1982, 15, 339-348.
  • [33]. Ram N., Sharma S.C., Analysis of orifice compensated non-recessed hole-entry hybrid journal bearing operating with micropolar lubricants, Tribology International 2012, 52, :132- 143.
  • [34]. Özkan M., Sakarya A., Çözelti Plazması Yöntemiyle Sentezlenen Gümüş Nanoparçacık Boyutuna Voltaj ve Çalışma Süresinin Etkisi, El-Cezeri Journal of Science and Engineering 2019, 6(3), 606-612.
APA DAL A, KILIÇ M, AKYÜZ A, TUNCER A, Gungor A (2020). Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. , 753 - 762. 10.31202/ecjse.686845
Chicago DAL Abdurrahim,KILIÇ Mustafa,AKYÜZ Ali Özhan,TUNCER Azim Doğuş,Gungor Afsin Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. (2020): 753 - 762. 10.31202/ecjse.686845
MLA DAL Abdurrahim,KILIÇ Mustafa,AKYÜZ Ali Özhan,TUNCER Azim Doğuş,Gungor Afsin Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. , 2020, ss.753 - 762. 10.31202/ecjse.686845
AMA DAL A,KILIÇ M,AKYÜZ A,TUNCER A,Gungor A Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. . 2020; 753 - 762. 10.31202/ecjse.686845
Vancouver DAL A,KILIÇ M,AKYÜZ A,TUNCER A,Gungor A Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. . 2020; 753 - 762. 10.31202/ecjse.686845
IEEE DAL A,KILIÇ M,AKYÜZ A,TUNCER A,Gungor A "Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing." , ss.753 - 762, 2020. 10.31202/ecjse.686845
ISNAD DAL, Abdurrahim vd. "Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing". (2020), 753-762. https://doi.org/10.31202/ecjse.686845
APA DAL A, KILIÇ M, AKYÜZ A, TUNCER A, Gungor A (2020). Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. El-Cezerî Journal of Science and Engineering, 7(2), 753 - 762. 10.31202/ecjse.686845
Chicago DAL Abdurrahim,KILIÇ Mustafa,AKYÜZ Ali Özhan,TUNCER Azim Doğuş,Gungor Afsin Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. El-Cezerî Journal of Science and Engineering 7, no.2 (2020): 753 - 762. 10.31202/ecjse.686845
MLA DAL Abdurrahim,KILIÇ Mustafa,AKYÜZ Ali Özhan,TUNCER Azim Doğuş,Gungor Afsin Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. El-Cezerî Journal of Science and Engineering, vol.7, no.2, 2020, ss.753 - 762. 10.31202/ecjse.686845
AMA DAL A,KILIÇ M,AKYÜZ A,TUNCER A,Gungor A Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. El-Cezerî Journal of Science and Engineering. 2020; 7(2): 753 - 762. 10.31202/ecjse.686845
Vancouver DAL A,KILIÇ M,AKYÜZ A,TUNCER A,Gungor A Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. El-Cezerî Journal of Science and Engineering. 2020; 7(2): 753 - 762. 10.31202/ecjse.686845
IEEE DAL A,KILIÇ M,AKYÜZ A,TUNCER A,Gungor A "Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing." El-Cezerî Journal of Science and Engineering, 7, ss.753 - 762, 2020. 10.31202/ecjse.686845
ISNAD DAL, Abdurrahim vd. "Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing". El-Cezerî Journal of Science and Engineering 7/2 (2020), 753-762. https://doi.org/10.31202/ecjse.686845