İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı

Yıl: 2021 Cilt: 0 Sayı: 25 Sayfa Aralığı: 556 - 561 Metin Dili: Türkçe DOI: 10.31590/ejosat.932871 İndeks Tarihi: 05-12-2021

İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı

Öz:
Amonyak ($NH_3$) ayrışma reaksiyonu, $CO_x$ emisyonu içermeyen $H_2$ üretmedeki potansiyel kullanımı nedeniyle önemlidir. NH3 ayrışmareaksiyonunda pek çok farklı katalizör kullanılmasına rağmen, metal gömülü grafen sistemler, deneysel olarak sentezlenebilir ve sadecebirkaç metal atomu kullanılmasından dolayı tek atom kristal yüzeylere göre çok daha ucuzdur. Bu çalışmada, İridyum (Ir) katkılı grafenyüzey üzerinde gerçekleşen $NH_3$ ayrışma reaksiyon mekanizması yoğunluk fonksiyonel teorisi (YFT) kullanılarak incelenmiştir. GrimeD2 düzeltmesi, adsorbe edilmiş yapılar ve yüzey arasındaki etkileşimlerle indüklenebilecek Van der Waals etkileşimleri içinkullanılmıştır. Öncelikle, Ir katkılı grafen yüzey üzerinde Bader yük analizi yapılmış ve elde edilen yük yoğunluğu bölgeleri elektronyoğunluk farklı ile gösterilmiştir. Ir katklı grafen yüzey üzerinde NHx (x= 0→3) türlerinin adsorpsiyonu ve onların parçalanmış NHx +yH (x+y=3) ikili bağlanma doğası araştırılmıştır. Son olarak, Ir katklı grafen yüzey üzerinde $NH_3$ ayrışması için reaksiyon mekanmasıönerilmiş ve her bir reaksiyon adımı için ihtiyaç duyulan enerji bariyerleri CINEB metodu yoluyla hesaplanmıştır. Elde edilen sonuçlar, Ir katkılı grafenin, $NH_3$ayrışma reaksiyonu için yüksek katalitik aktivite sergilediğini göstermiştir. Ayrıca NH → N+H adımı, genelreaksiyonun hız belirleyici adımı olduğu belirlenmiştir. Elde edilen bu bilgiler ışığında, $NH_3$ ayrışması için, Ir katklı grafen malzemelerüzerinde farklı stratejilerin ve teknolojilerin geliştirilmesinde kullanılabileceği sonucuna varılmıştır.
Anahtar Kelime:

Mechanistic Investigation of $NH_3$ Decomposition Reaction on Iridium-Doped Graphene Surface: Density Functional Theory Approach

Öz:
Ammonia (NH3) decomposition reaction is of great importance owing to its potential use in $CO_x$-emission-free $H_2$ production. Althoughmany different catalysts are used in the $NH_3$ decomposition reaction, metal-embedded graphene systems can be synthesizedexperimentally and are much cheaper than single-atom crystal surfaces due to the use of only a few metal atoms. In this study, $NH_3$ decomposition reaction on Iridium (Ir) doped graphene surface was investigated using density functional theory (DFT). Grime D2correction was used for Van der Waals interactions that can be induced by interactions between adsorbed structures and the surface.Metal-embedded graphene systems can be synthesized experimentally and are much cheaper than single-atom crystal surfaces due tothe use of only a few metal atoms. First of all, bader charge analysis was performed on the Ir doped graphene surface and the obtainedcharge density regions were shown with electron density difference. The adsorption of NHx (x = 0 → 3) species on the ir doped graphenesurface and their fragmented NHx + yH (x + y = 3) double bonding nature were investigated. Finally, the reaction mechanism for $NH_3$ decomposition on the Ir doped graphene surface is proposed and the energy barriers required for each reaction step are calculated bythe CINEB method. The results obtained showed that the Ir doped graphene exhibits high catalytic activity for the $NH_3$ decompositionreaction. In addition, the NH → N + H step was determined to be the rate determining step of the overall reaction. In the light of thisinformation obtained, it is concluded that different strategies and technologies can be used on the Ir doped graphene materials for $NH_3$ decomposition.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aghaei, S. M., Monshi, M. M., Torres, I., Zeidi, S. M. J., & Calizo, I. (2018). DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Applied Surface Science, 427, 326-333.
  • Akça, A. (2021). Conversion of Methane to Methanol on CDoped Boron Nitride: A DFT Study. Computational and Theoretical Chemistry, 113291.
  • Akça, A. (2020). CH4 dissociation on the Pd/Cu (111) surface alloy: A DFT study. Open Physics, 18(1), 790-798.
  • Akça, A., Karaman, O., & Karaman, C. (2021). Mechanistic Insights into Catalytic Reduction of N2O by CO over CuEmbedded Graphene: A Density Functional Theory Perspective. ECS Journal of Solid State Science and Technology.
  • Banavali, R., Chang, M. Y., Fitzwater, S. J., & Mukkamala, R. (2002). Thermal hazards screening study of the reactions between hydrogen cyanide and sulfuric acid and investigations of their chemistry. Industrial & engineering chemistry research, 41(2), 145-152.
  • Chellappa, A. S., Fischer, C. M., & Thomson, W. J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Applied Catalysis A: General, 227(1-2), 231-240.
  • Chen, Y., Ji, S., Chen, C., Peng, Q., Wang, D., & Li, Y. (2018). Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2(7), 1242-1264.
  • Choudhary, T. V., Sivadinarayana, C., & Goodman, D. W. (2001). Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catalysis Letters, 72(3), 197-201.
  • Chu, K., Liu, Y. P., Wang, J., & Zhang, H. (2019). NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3. ACS Applied Energy Materials, 2(3), 2288-2295.
  • Genç, A. E., Küçük, H., Alp, I. O., & Akça, A. (2020). Hydrazine decomposition on nickel-embedded graphene. International Journal of Hydrogen Energy, 45(58), 33407-33418.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.
  • Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 1-17.
  • Henkelman, G., Uberuaga, B. P., & Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 113(22), 9901-9904.
  • Hu, Z. P., Weng, C. C., Chen, C., & Yuan, Z. Y. (2018). Twodimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Molecular Catalysis, 448, 162-170.
  • Huang, Y., Jiao, W., Chu, Z., Wang, S., Chen, L., Nie, X., ... & He, X. (2019). High sensitivity, humidity-independent, flexible NO2 and NH3 gas sensors based on SnS2 hybrid functional graphene ink. ACS applied materials & interfaces, 12(1), 997-1004.
  • Huang, Z. F., Wang, J., Peng, Y., Jung, C. Y., Fisher, A., & Wang, X. (2017). Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Advanced Energy Materials, 7(23), 1700544.
  • Ji, J., Duan, X., Qian, G., Zhou, X., Tong, G., & Yuan, W. (2014). Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. International journal of hydrogen energy, 39(24), 12490-12498.
  • Jiang, Q., Zhang, J., Ao, Z., Huang, H., He, H., & Wu, Y. (2018). First principles study on the CO oxidation on Mn-embedded divacancy graphene. Frontiers in chemistry, 6, 187.
  • Jónsson, H., Mills, G., & Jacobsen, K. W. (1998). Nudged elastic band method for finding minimum energy paths of transitions.
  • Ju, X., Liu, L., Yu, P., Guo, J., Zhang, X., He, T., ... & Chen, P. (2017). Mesoporous Ru/MgO prepared by a depositionprecipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Applied Catalysis B: Environmental, 211, 167-175.
  • Karaman, C., Karaman, O., Atar, N., & Yola, M. L. (2021). Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: Boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochimica Acta, 380, 138262.
  • Karaman, C. (2021). Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis.
  • Klerke, A., Christensen, C. H., Nørskov, J. K., & Vegge, T. (2008). Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry, 18(20), 2304- 2310.
  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3), 1758.
  • Lee, J., Park, H., & Choi, W. (2002). Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water. Environmental science & technology, 36(24), 5462- 5468.
  • Lin, Z. Z. (2016). Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon, 108, 343- 350.
  • Liu, X., Duan, T., Meng, C., & Han, Y. (2015). Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: a first-principles investigation. Rsc Advances, 5(14), 10452-10459.
  • Lorenzut, B., Montini, T., Bevilacqua, M., & Fornasiero, P. (2012). FeMo-based catalysts for H2 production by NH3 decomposition. Applied Catalysis B: Environmental, 125, 409-417.
  • Lu, Z., Xu, G., He, C., Wang, T., Yang, L., Yang, Z., & Ma, D. (2015). Novel catalytic activity for oxygen reduction reaction on MnN4 embedded graphene: a dispersion-corrected density functional theory study. Carbon, 84, 500-508.
  • Malyi, O. I., Sopiha, K., Kulish, V. V., Tan, T. L., Manzhos, S., & Persson, C. (2015). A computational study of Na behavior on graphene. Applied Surface Science, 333, 235-243.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., ... & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197-200.
  • Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., ... & Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt 1/FeO x. Nature chemistry, 3(8), 634-641.
  • Schüth, F., Palkovits, R., Schlögl, R., & Su, D. S. (2012). Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy & Environmental Science, 5(4), 6278-6289.
  • Shao, Y., Dodelet, J. P., Wu, G., & Zelenay, P. (2019). PGM‐free cathode catalysts for PEM fuel cells: a mini‐review on stability challenges. Advanced materials, 31(31), 1807615.
  • Song, E. H., Wen, Z., & Jiang, Q. (2011). CO catalytic oxidation on copper-embedded graphene. The Journal of Physical Chemistry C, 115(9), 3678-3683.
  • Su, Q., Gu, L., Yao, Y., Zhao, J., Ji, W., Ding, W., & Au, C. T. (2017). Layered double hydroxides derived Nix (MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Applied Catalysis B: Environmental, 201, 451-460.
  • Uma, K., Chen, S. W., Arjun, N., Pan, G. T., & Yang, T. C. K. (2018). The production of an efficient visible light photocatalyst for CO oxidation through the surface plasmonic effect of Ag nanoparticles on SiO 2@ α-Fe 2 O 3 nanocomposites. RSC advances, 8(23), 12547-12555.
  • Varisli, D., & Kaykac, N. G. (2012). COx free hydrogen production over cobalt incorporated silicate structured mesoporous catalysts. Applied Catalysis B: Environmental, 127, 389-398.
  • Yeo, S. C., Han, S. S., & Lee, H. M. (2014). Mechanistic investigation of the catalytic decomposition of ammonia (NH3) on an Fe (100) surface: a DFT study. The Journal of Physical Chemistry C, 118(10), 5309-5316.
  • Yin, S. F., Xu, B. Q., Zhou, X. P., & Au, C. T. (2004). A minireview on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Applied Catalysis A: General, 277(1-2), 1-9.
  • Yin, S. F., Zhang, Q. H., Xu, B. Q., Zhu, W. X., Ng, C. F., & Au, C. T. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia. Journal of Catalysis, 224(2), 384-396.
  • Zamfirescu, C., & Dincer, I. (2008). Using ammonia as a sustainable fuel. Journal of Power Sources, 185(1), 459-465.
  • Zhang, J., Müller, J. O., Zheng, W., Wang, D., Su, D., & Schlögl, R. (2008). Individual Fe− Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano letters, 8(9), 2738-2743.
  • Zou, C. Y., Ji, W., Shen, Z., Tang, Q., & Fan, M. (2018). NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study. Applied Surface Science, 442, 778-786.
APA Karaman O (2021). İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. , 556 - 561. 10.31590/ejosat.932871
Chicago Karaman Onur İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. (2021): 556 - 561. 10.31590/ejosat.932871
MLA Karaman Onur İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. , 2021, ss.556 - 561. 10.31590/ejosat.932871
AMA Karaman O İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. . 2021; 556 - 561. 10.31590/ejosat.932871
Vancouver Karaman O İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. . 2021; 556 - 561. 10.31590/ejosat.932871
IEEE Karaman O "İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı." , ss.556 - 561, 2021. 10.31590/ejosat.932871
ISNAD Karaman, Onur. "İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı". (2021), 556-561. https://doi.org/10.31590/ejosat.932871
APA Karaman O (2021). İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. Avrupa Bilim ve Teknoloji Dergisi, 0(25), 556 - 561. 10.31590/ejosat.932871
Chicago Karaman Onur İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. Avrupa Bilim ve Teknoloji Dergisi 0, no.25 (2021): 556 - 561. 10.31590/ejosat.932871
MLA Karaman Onur İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. Avrupa Bilim ve Teknoloji Dergisi, vol.0, no.25, 2021, ss.556 - 561. 10.31590/ejosat.932871
AMA Karaman O İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. Avrupa Bilim ve Teknoloji Dergisi. 2021; 0(25): 556 - 561. 10.31590/ejosat.932871
Vancouver Karaman O İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı. Avrupa Bilim ve Teknoloji Dergisi. 2021; 0(25): 556 - 561. 10.31590/ejosat.932871
IEEE Karaman O "İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı." Avrupa Bilim ve Teknoloji Dergisi, 0, ss.556 - 561, 2021. 10.31590/ejosat.932871
ISNAD Karaman, Onur. "İridyum Katkılı Grafen Yüzey Üzerinde $NH_3$ Ayrışma ReaksiyonununMekanistik İncelemesi: Yoğunluk Fonksiyonel Teori Yaklaşımı". Avrupa Bilim ve Teknoloji Dergisi 25 (2021), 556-561. https://doi.org/10.31590/ejosat.932871