Yıl: 2021 Cilt: 14 Sayı: 2 Sayfa Aralığı: 97 - 120 Metin Dili: İngilizce DOI: 10.25135/acg.oc.100.21.03.2006 İndeks Tarihi: 06-12-2021

Click chemistry: a fascinating method of connecting organic groups

Öz:
Abstract: Click chemistry, a modular synthetic strategy for synthesizing the assembly of novel molecular entities, has made a tremendous impact in the field of science since its debut. This powerful strategy relies mainly upon the construction of carbon–heteroatom bonds using spring-loaded reactants. Its growing number of applications are found in nearly all areas of modern chemistry ranging from drug discovery to materials science. This manuscript includes important aspects of the copper-catalyzed Huisgen cycloaddition reaction, which is considered a gold standard of click chemistry due to its biocompatibility and reliability, along with its applications in bioconjugation, drug delivery and polymer chemistry. A bird′s eye view of recent progress in developing the copper-free click chemistry protocols such as catalyst-free strain-promoted alkyne–azide cycloaddition (SPAAC) click chemistry has also been provided.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] 217th American Chemical Society annual meeting, 1999.
  • [2] Kolb, H.C.; Finn, M. G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004 – 2021.
  • [3] Gontcharov, A.V. tert-Butylsulfonamide. A new nitrogen source for catalytic aminohydroxylation and aziridination of olefins. Org. Lett. 1999, 1, 783–786
  • [4] Kolb, H.C. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994, 94, 2483–2547.
  • [5] Adolfsson, H. Comparison of amine additives most effective in the new methyltrioxorhenium-catalyzed epoxidation process. Tetrahedron Lett. 1999, 40, 3991–3994.
  • [6] Kühle, E. One-hundred years of sulfenic acid chemistry. IIa. Oxidation, reduction, and addition reactions of sulfenyl halides. Synthesis (Mass.) 1970, 11, 563–586
  • [7] Huisgen, R.,1,3-Dipolar cycloaddition – introduction, survey, mechanism. In 1,3-Dipolar Cycloaddition, Padwa, A.; Eds; John Wiley and Sons, New York, 1984.
  • [8] Jorgensen, K.A. Catalytic asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines. Angew. Chem. Int. Ed. Engl. 2000, 39, 3558–3588
  • [9] Tietze, L.F.; Kettschau, G., Hetero Diels-Alder reactions in organic chemistry. Top. Curr. Chem. 1997, 189, 1–120
  • [10] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
  • [11] Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057– 3064.
  • [12] Binder, W. H.; Sachsenhofer, R. Click chemistry in polymer and material science: an update. Macromol. Rapid Commun. 2008, 29, 952–981.
  • [13] Breinbauer, R.; Kohn, M. Azide–alkyne coupling: a powerful reaction for bioconjugate chemistry. ChemBioChem. 2003, 4, 1147–1149.
  • [14] Kolb, H.C.; Sharpless, K. B. Drug discovery today, the growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137.
  • [15] Gholami, M. R; Yangjeh, A.H. Hydrophobic effects in 1,3- dipolar cycloaddition of C,N-diphenylnitrone with Dibutyl fumarate in aqueous solutions. J. Chem. Res. 1999, 3, 226–227
  • [16] Lee, L.V.; Mitchell, M.L.; Huang, S.J.; Valery V. Fokin, V.V.; Sharpless, K.B.; Wong, C.H. A potent and highly selective inhibitor of human a-1,3-Fucosyltransferase via click chemistry. J. Am. Chem. Soc. 2003, 125, 9588–9589
  • [17] Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36, 1249–1262.
  • [18] Hang, H. C.; Bertozzi, C. R. Chemoselective approaches to glycoprotein assembly, Acc. Chem. Res. 2001, 34, 727 -736.
  • [19] Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007-2010
  • [20] Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 2002, 99, 19 -24.
  • [21] Breinbauer, R.; Kohn, M. Azide-alkyne coupling: a powerful reaction for bioconjugate chemistry. ChemBioChem. 2003, 4, 1147-1149.
  • [22] Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. 2002, 114, 1095 – 1098.
  • [23] Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057 - 3064.
  • [24] Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C. H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 2002, 124, 14397-14402.
  • [25] Perez-Balderas, F.; Munoz, M.O.; Sanfrutos, J.M.; Mateo, F.H.; Flores, F.C.C.; Asin, J. A. C.; Garcia, J. I.; Gonzalez, F. A. G. Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org. Lett. 2003, 5, 1951-1954.
  • [26] Liu, Y.; Hou, W.; Sun, H.; Cui, C.; Zhang, L.; Jiang,Y.; Wu,Y.X.; Wang, Y.; Li, J.; Sumerlin, B.S.; Liu. Q.; Tan, W. Thiol–ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chem. Sci. 2017, 8, 6182–6187.
  • [27] Ramachandra, L.; Simmons, D.; Harding, C. V. MHC molecules and microbial antigen processing in phagosomes. Curr. Opin. Immunol. 2009, 21, 98−104.
  • [28] Burgdorf, S.; Kurts, C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr. Opin. Immunol. 2008, 20, 89−95.
  • [29] Yoshida, T.; Mei, H.; Doerner, T.; Hiepe, F.; Radbruch, A.; Fillatreau, S.; Hoyer, B. F. Memory B and memory plasma cells. Immunol. Rev. 2010, 237, 117−139. [30] Bachmann, M. F., and Jennings, G. T., Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev.Immunol. 2010, 10, 787−96. [31] Costantino, P.; Rappuoli, R.; Berti, F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin. Drug Discov. 2011, 6, 1045−1066. [32] Yin, Z.; Comellas-Aragonés, M.; Chowdhury, S.; Bentley, P.; Kaczanowska, K.; Benmohamed, L.; Gildersleeve, J. C.; Finn, M. G.; Huang, X. Boosting immunity to small tumor associated carbohydrates with bacteriophage qbeta capsids. ACS Chem. Biol. 2013, 8, 1253−1262. [33] Ceballos-Alcantarilla, E.; Abad-Somovilla, A.; Agulló, C.; Abad-Fuentes, A.; Mercader, J. V. Protein-free hapten-carbon nanotube constructs induce the secondary immune response. Bioconjugate Chem. 2017, 28, 1630−1638. [34] Parra, J.; Abad-Somovilla, A.; Mercader, J. V.; Taton, T. A.; Abad-Fuentes, A. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J. Controlled Release 2013, 170, 242−251. [35] Pickens, C. J.; Johnson, S. N.; Pressnall, M. M.; Leon, M. A.; Berkland, C. J. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjugate Chem. 2018, 29, 686−701. [36] Elahipanah, S.; O’Brien, P. J.; Rogozhnikov, D.; Yousaf, M.N. General dialdehyde click chemistry for amine bioconjugation. Bioconjugate Chem. 2017, 28, 1422−1433. [37] López-Puertollano,D.; Agulló,C.; Mercader, J.V.; Abad-Somovilla, A.; Abad-Fuentes, A. Click chemistryassisted bioconjugates for hapten immunodiagnostics. Bioconjugate Chem. 2020, 31, 956−964. [38] Stephanopoulos, N.; Francis, M. B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 2011, 7, 876−884. [39] Zhou, Q.; Gui, J.; Pan, C.M.; Albone, E.; Cheng, X.; Suh, E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. Bioconjugation by native chemical tagging of C−H bonds. J. Am. Chem. Soc. 2013, 135, 12994−12997. [40] Smith, M. E. B.; Schumacher, F. F.; Ryan, C. P.; Tedaldi, L. M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. R. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 2010, 132, 1960−1965. [41] Debets, M. F.; van Berkel, S. S.; Dommerholt, J.; Dirks, A. J.; Rutjes, F. P. J. T.; Delft, F. L.V. Bioconjugation with strained alkenes and alkynes. Acc. Chem. Res. 2011, 44, 805−815.
  • [42] Hecht, S.; Fréchet, J. M. J. Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew. Chem., Int. Ed. 2001, 40, 74−91. [43] Mckittrick, M. W.; Jones, C. W. Toward single-site functional materials preparation of amine-functionalized surfaces exhibiting site-isolated behavior. Chem. Mater. 2003, 15, 1132−1139. [44] Ferruti, P.; Marchisio, M. A.; Duncan, R. Poly(amido-amine)s: biomedical applications. Macromol. Rapid Commun. 2002, 23, 332−355. [45] Paetzold, J.; Baeckvall, J. E. Chemoenzymatic dynamic kinetic resolution of primary amines. J. Am. Chem. Soc. 2005, 127,17620−17621. [46] Binder, W. H.; Sachsenhofer, R. ‘Click’ chemistry in polymer and material science: an update. Macromol. Rapid Commun. 2008, 29, 952−981. [47] Elahipanah, S.; O’Brien, P.J.; Rogozhnikov, D.; Yousaf,M.N. General Dialdehyde Click Chemistry for Amine Bioconjugation. Bioconjugate Chem. 2017, 28, 1422−1433. [48] Durmaz, H.; Dag, A.; Altintas, O.; Erdogan, T.; Hizal, G.; Tunca, U. One-pot synthesis of ABC type triblock copolymers via in situ click [3+ 2] and Diels− Alder [4+ 2] reactions. Macromolecules 2007, 40, 191–198. [49] Opsteen, J. A.; van Hest, J. C. M. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem. Commun. 2005, 57–59. [50] Kyeremateng, S. O.; Amado, E.; Blume, A.; Kressler, J. Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with 'click' chemistry, Macromol. Rapid Commun. 2008, 29, 1140–1146. [51] Quemener, D.; Davis, T. P.; Barner-Kowollik. C.; Stenzel, M. H. RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chem. Commun. 2006, 5051–5053. [52] O’Reilly, R. K.; Joralemon, M. J.; Wooley. K. L.; Hawker, C. J. Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chem. Mater. 2005, 17, 5976–5988. [53] Joralemon, M. J.; O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization. J. Am. Chem. Soc. 2005, 127, 16892– 16899. [54] Opsteen, J. A.; Brinkhuis, R. P.; Teeuwen, R. L. M.; Loewik, D. W. P. M.; van Hest, J. C. M. “Clickable” polymersomes, Chem. Commun. 2007, 3136–3138. [55] Levins, A. D.; Wang, X.; Moughton, A. O.; Skey. J.; O’Reilly, R. K. Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles, Macromolecules 2008, 41, 2998–3006. [56] Jiang, X.; Zhang, G.; Narain.R.; Liu, S. Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir 2009, 25, 2046–2054. [57] Sumerlin, B. S.; Tsarevsky, N. V.; Louche,G.; Lee, R. Y.; Matyjaszewski, K. Highly efficient “click” functionalization of poly (3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 2005, 38, 7540– 7545. [58] Chan, T. R.; Hilgraf, R.; Sharpless, K.B.; Fokin, V. V. Polytriazoles as copper (I)-stabilizing ligands in catalysis. Org. Lett. 2004, 6, 2853–2855. [59] Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.; Irwin, J. L.; Haddleton, D. M. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J. Am. Chem. Soc. 2006, 128, 4823–4830. [60] Binder, W. H.; Kluger, C. Combining ring-opening metathesis polymerization (ROMP) with Sharpless-type “click” reactions: An easy method for the preparation of side chain functionalized poly(oxynorbornenes). Macromolecules 2004, 37, 9321–9330. [61] Malkoch, M.; Thibault, R. J.; Drockenmuller, E.; Messerschmidt, M.; Voit,B.; Russell, T. P., Hawker, C. J. Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. J. Am. Chem. Soc. 2005,127, 14942–14949. [62] Crescenzi, V.; Cornelio, L.; Di Meo,C.; Nardecchia, S.; Lamanna, R. Novel hydrogels via click chemistry: synthesis and potential biomedical applications, Biomacromolecules 2007, 8, 1844–1850. [63] Matsumura,G.; Pigman, W. Catalytic role of copper and iron ions in the depolymerization of hyaluronic acid by ascorbic acidArch. Biochem. Biophys. 1965, 110, 526–533 [64] Xia, Y.; Verduzco, R.; Grubbs, R. H.; Kornfield, J. A. Well-defined liquid crystal gels from telechelic polymers. J. Am.Chem. Soc. 2008, 130, 1735–1740. [65] Johnson, J. A.; Lewis, D. R.; Diaz, D. D.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Synthesis of degradable model networks via ATRP and click chemistry. J. Am. Chem. Soc. 2006, 128, 6564–6565. [66] Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun. 2008, 29,1052−1072. [67] Li, Y.; Zheng, X.; Zhu, H.; Wu, K.; Lu, M. Synthesis and self-assembly of well-defined binary graft copolymer and its use in superhydrophobic cotton fabrics preparation. RSC Adv. 2015, 5, 46132−46145.
  • [68] Smith, K. A.; Lin, Y. H.; Dement, D. B.; Strzalka, J.; Darling, S.B.; Pickel, D. L.; Verduzco, R. Synthesis and crystallinity of conjugated block copolymers prepared by click chemistry. Macromolecules 2013, 46, 2636−2645. [69] Arslan, M.; Gok, O.; Sanyal, R.; Sanyal, A. Clickable poly(ethylene glycol)-based copolymers using azidealkyne click cycloaddition-mediated step-growth polymerization. Macromol. Chem. Phys. 2014, 215, 2237−2247. [70] Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem. Rev. 2016, 116, 14726−14768. [71] Li, L.; Hollinger, J.; Jahnke, A. A.; Petrov, S.; Seferos, D. S. Polyselenophenes with distinct crystallization properties. Chem. Sci. 2011, 2, 2306−2310. [72] Hollinger, J.; Jahnke, A. A.; Coombs, N.; Seferos, D. S. Controlling phase separation and optical properties in conjugated polymers through selenophene-thiophene copolymerization. J. Am. Chem. Soc. 2010, 132, 8546−8547. [73] Gao, D.; Hollinger, J.; Seferos, D. S. Selenophene-thiophene block copolymer solar cells with thermostable nanostructures. ACS Nano, 2012, 6, 7114−7121. [74] Hollinger, J.; Seferos, D. S. Morphology control of selenophene−thiophene block copolymers through side chain engineering. Macromolecules 2014, 47, 5002−5009. [75] Gao, D.; Hollinger, J.; Jahnke, A. A.; Seferos, D. S. Influence of selenophene−thiophene phase separation on solar cell performance. J. Mater. Chem. A 2014, 2, 6058−6063. [76] Hollinger, J.; Sun, J.; Gao, D.; Karl, D.; Seferos, D. S. Statistical conjugated polymers comprising optoelectronically distinct units. Macromol. Rapid Commun. 2013, 34, 437−441. [77] Kozycz, L. M.; Gao, D.; Seferos, D. S. Compositional Influence on the regioregularity and device parameters of a conjugated statistical copolymer. Macromolecules 2013, 46, 613−621. [78] Gao, H.; Matyjaszewski, K. Synthesis of star polymers by a combination of ATRP and the “click” coupling method. Macromolecules 2006, 39,4960–4965. [79] Gao, H.; Min K.; Matyjaszewski, K. Synthesis of 3‐arm star block copolymers by combination of “core‐first” and “coupling‐onto” methods using ATRP and click reactions. Macromol. Chem. Phys. 2007, 208, 1370– 1378. [80] Altintas, O.; Hizal, G.; Tunca, U. ABC‐type hetero‐arm star terpolymers through “click” chemistry. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5699–5707. [81] Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. Synthesis of 3-miktoarm stars and 1st generation mikto dendritic copolymers by “living” radical polymerization and “click” chemistry. J. Am. Chem. Soc. 2006, 128, 11360–11361. [82] Liu, H.; Li, C.; Liu, H.; Liu, S. pH-responsive supramolecular self-assembly of well-defined zwitterionic ABC miktoarm star terpolymers. Langmuir, 2009, 25, 4724–4734. [83] Altintas, O.; Hizal, G.; Tunca, U. Synthesis of an ABCD 4-miktoarm star quaterpolymer through a Diels– Alder click reaction. Des. Monomers Polym. 2009, 12, 83–98. [84] Zhang, Y.; Liu, H.; Hu, J.; Li, C.; Liu, S. Synthesis and aggregation behavior of multi‐responsive double hydrophilic ABC miktoarm star terpolymer. Macromol. Rapid Commun. 2009, 30, 941–947. [85] Gao, H.; Matyjaszewski, K. Synthesis of molecular brushes by “grafting onto” method: combination of ATRP and click reactions. J. Am. Chem. Soc. 2007, 129, 6633–6639. [86] Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K. Graft copolymers by a combination of ATRP and two different consecutive click reactions. Macromolecules 2007, 40, 4439–4445. [87] Li, C.; Ge, Z.; Fang, J.; Liu, S. Synthesis and self-assembly of coil−rod double hydrophilic diblock copolymer with dually responsive asymmetric centipede-shaped polymer brush as the rod segment. Macromolecules 2009, 42, 2916–2924. [88] Scheel, A. J.; Komber, H.; Voit, B. I. Novel hyperbranched poly([1,2,3]triazole)s derived from AB2 monomers by a 1,3‐dipolar cycloaddition. Macromol. Rapid Commun. 2004, 25, 1175–1180. [89] Saha, A.; Ramakrishnan, S. Site-specific functionalization of hyperbranched polymers using “click” chemistry. Macromolecules 2009, 42,4028–4037. [90] Qin, A.; Lam, J. W. Y.; Jim, C. K. W.; Zhang, L.; Yan, J.; Haussler, M.; Liu, J.; Dong, Y.; Liang, D.; Chen, E.; Jia, G.; Tang, B. Z.Hyperbranched polytriazoles: Click polymerization, regioisomeric structure, light emission, and fluorescent patterning. Macromolecules 2008,41, 3808–3822. [91] Xie, J.; Hu, L.; Shi, W.; Deng, X.; Cao, Z.; Shen, Q. Synthesis and nonlinear optical properties of hyperbranched polytriazole containing second‐order nonlinear optical chromophore. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1140–1148. [92] Li, Z. a.; Yu, G.; Hu, P.; Ye, C.; Liu, Y.; Qin, J.; Li, Z. New azo-chromophore-containing hyperbranched polytriazoles derived from AB2 monomers via click chemistry under copper(I) catalysis. Macromolecules 2009, 42, 1589–1596.
  • [93] Ranjan, R.; Brittain, W. J. Tandem RAFT polymerization and click chemistry: an efficient approach to surface modification. Macromol. Rapid Commun. 2007, 28, 2084–2089. [94] Li, H.; Cheng, F. A. M. Duft and A. Adronov, Functionalization of single-walled carbon nanotubes with welldefined polystyrene by “click” coupling. J. Am. Chem. Soc., 2005, 127, 14518–14524. [95] Li, H.; Adronov, A. Water-soluble SWCNTs from sulfonation of nanotube-bound polystyrene. Carbon 2007, 45, 984–990. [96] Zhang, Y.; He, H.; Gao, C.; Wu, J. Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry. Langmuir 2009, 25,5814–5824. [97] W.-B. Zhang, Y. Tu, R. Ranjan, R. M. Van Horn, S. Leng, J. Wang, M. J. Polce, C. Wesdemiotis, R. P. Quirk, G. R. Newkome and S. Z. D. Cheng. “Clicking” fullerene with polymers: synthesis of [60] fullerene end-capped polystyrene. Macromolecules 2008, 41,515–517. [98] Li. Y.; Benicewicz, B. C. Functionalization of silica nanoparticles via the combination of surface-initiated RAFT polymerization and click reactions, Macromolecules 2008, 41, 7986–7992. [99] Devaraj, N. K.; Collman, J. P. Copper catalyzed azide‐alkyne cycloadditions on solid surfaces: applications and future directions. QSAR Comb. Sci. 2007, 26, 1253–1260. [100] Ostaci, R.V.; Damiron, D.; Capponi, S.; Vignaud,G.; Leger, L.; Grohens, Y.; Drockenmuller, E. Polymer brushes grafted to “passivated” silicon substrates using click chemistry. Langmuir, 2008, 24, 2732–2739. [101] Sawoo, S.; Dutta, P.; Chakraborty, A.; Mukhopadhyay, R.; Bouloussa, O.; Sarkar, A. A new bio-active surface for protein immobilisation viacopper-free ‘click’ between azido SAM and alkynyl Fischer carbene complex. Chem. Commun. 2008, 5957–5959. [102] Salvio, R.; Krabbenborg, S.; Naber, W. J. M.; Velders, A. H.; Reinhoudt, D. N.; van der Wiel, W. G. The formation of large‐area conducting graphene‐like platelets. Chem.Eur. J. 2009, 15, 8235–8240. [103] Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 2010, 110, 132–145 [104] Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: features, developments and perspectives. Prog. Polym. Sci., 2007, 32, 93-146 [105] Matyjaszewski, K.; Braunecker, W. A. Radical polymerization. In Macromolecular Engineering: from Precise Macromolecular Synthesis to macroscopic Materials Properties and Applications. Matyjaszewski, K.; Gnanou, Y.; Leibler, L.; Eds; Wiley-VCH, Weinheim, Germany, 2007. [106] Matyjaszewski, K.; Davis, T. P. Future Outlook and perspectives for radical polymerization. In Handbook of Radical Polymerization. Matyjaszewski, K.; Davis, T. P.; Eds., Wiley, New York, 2002. [107] Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina,J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT). Polym. Int., 2000, 49, 993-1001 [108] Rizzardo, E.; Chiefari, J.; Mayadunne R.; Moad, G.; Thang,S. Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromol. Symp. 2001, 174, 209-2012. [109] Cunningham, M. F. Controlled/living radical polymerization in aqueous dispersed systems. Prog. Polym. Sci. 2008, 33, 365-398. [110] Lowe,B.; McCormick, C.L. Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog. Polym. Sci. 2007, 32, 283–351. [111] Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-catalyzed living radical polymerization, Chem. Rev. 2001, 101,3689–3745; [112] Matyjaszewski K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101,2921–2990; [113] Wang, J.S.; Matyjaszewski, K. Controlled/" living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc.1995, 117, 5614–5615; [114] Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat.Chem. 2009, 1, 276–288; [115] Tsarevsky, N. V.; Matyjaszewski, K. “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 2007, 107, 2270– 2299. [116] Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a freeradical polymerization process. Macromolecules 1993, 26, 2987-2988. [117] Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661-3688. [118] Jakubowski, W.; Matyjaszewski, K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139-4416. [119] Arehart,S.V.; Matyjaszewski, K. Atom transfer radical copolymerization of styrene and n-butyl acrylate. Macromolecules 1999, 32,2221-2231.
  • [120] Jakubowski, W.; Min, K.; Matyjaszewski, K. Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 2006, 39, 39-45. [121] Jakubowski, W.; Matyjaszewski, K. Activators regenerated by electron transfer for atom‐transfer radical polymerization of (meth)acrylates and related block copolymers. Angew. Chem., Int. Ed. 2006, 45, 4482- 4486. [122] Matyjaszewski,K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J. Y.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15309-15314. [123] Matyjaszewski, K.;. Qiu, J.; Tsarevsky, N. V.; Charleux, B. Atom transfer radical polymerization of n‐butyl methacrylate in an aqueous dispersed system: a miniemulsion approach. J. Polym. Sci., Polym. Chem. Ed. 2000, 38, 4724-4734. [124] Pintauer,T.; Matyjaszewski, K. Structural aspects of copper catalyzed atom transfer radical polymerization. Coord. Chem. Rev. 2005, 249, 1155-1184. [125] Min,K.; Matyjaszewski, K.; Atom transfer radical polymerization in aqueous dispersed media. Cent. Eur. J. Chem. 2009, 7, 657–674. [126] Matyjaszewski, K. Introduction to living polymeriz. Living and/or controlled polymerization. J. Phys. Org. Chem. 1995, 8, 197–207; [127] Matyjaszewski, K. Mechanistic and synthetic aspects of atom transfer radical polymerization. J. Macromol. Sci., Pure Appl. Chem. 1997, A34, 1785-1801. [128] Qiu, J.; Matyjaszewski, K.; Thouin, L.; Amatore,C. Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization. Macromol. Chem. Phys. 2000, 201, 1625-1631. [129] Matyjaszewski, K.; Jo, S.M.; Paik H. J.; Shipp, D. A. An Investigation into the CuX/2,2’-bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile. Macromolecules 1999, 32, 6431- 6438. [130] Matyjaszewski, K.; Paik, H. J.; Zhou. P.; Diamanti, S. J. Determination of Activation and Deactivation Rate Constants of Model Compounds in Atom Transfer Radical Polymerization. Macromolecules 2001, 34, 15, 5125-5131. [131] Matyjaszewski, K. Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog. Polym. Sci. 2005, 30, 858–875. [132] Lutz, J.F.; Lehn, J.M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024. [133] Golas, P.L.; Matyjaszewski, K. Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338–1354. [134] Xue, W.; Wang, J.; Wen, M.; Chen, G.; Zhang, W. Integration of CuAAC polymerization and controlled radical polymerization into electron transfer mediated “click-radical” concurrent polymerization. Macromol. Rapid Commun. 2017, 38, 1600733. [135] Han, D.; Tong, X.; Zhao, Y. One-pot synthesis of brush diblock copolymers through simultaneous ATRP and click coupling. Macromolecules 2011, 44, 5531–5536. [136] Xu, B.; Feng, C.; Huang, X. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun. 2017, 8, 333. doi:10.1038/s41467-017-00365-2 [137] Cheng, C.; Bai, X.; Zhang, X.; Chen, M.; Huang, Q.; Hu, Z.; Tu, Y. Facile synthesis of block copolymers from a cinnamate derivative by combination of AGET ATRP and click chemistry. Macromol. Res. 2014, 22, 1306–1311. [138] Yao, F.; Xu, L.; Fu, G.D.; Lin, B. Sliding-graft interpenetrating polymer networks from simultaneous “click chemistry” and atom transfer radical polymerization. Macromolecules 2010, 43, 9761–9770. [139] Zhang, W.; Xue, W.; Ming, W.; Weng, Y.; Chen, G.; Haddleton, D.M. Regenerable-catalyst-aided, opened to air and sunlight-driven “CuAAC&ATRP” concurrent reaction for sequence-controlled copolymer. Macromol. Rapid Commun. 2017, 38, 1700511. [140] Zhu, H.; Chen, G.; Zhang, Z.; Zhou, N.; Zhang, W.; Zhu, X. Fe(0) powder-catalyzed one-pot reaction: concurrent living radical polymerization and click chemistry for topological polymers. Polym. Chem. 2015, 6, 4794-4800. [141] Xu, B.; Feng, C.; Huang, X.; A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nature Commun. 2017, 8. Article number 333. Doi:10.1038/s41467-017-00365-2 [142] Xue,W.; Wang, J.; Wen, M.; Chen, G.; Zhang, W. Integration of CuAAC polymerization and controlled radical polymerization into electron transfer mediated “click-radical” concurrent polymerization. Macromol. Rapid Commun. 2017, 38, 1600733. [143] Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization. Chem. Soc. Rev. 2010, 39, 2522−2544. [144] Barner-Kowollik, C.; Du Prez, F. E.; Espeel, P.; Hawker, C. J.; Junkers, T.; Schlaad, H.; Van Camp, W. "clicking" polymers or just efficient linking: what is the difference? Angew. Chem. Int. Ed. 2011, 50, 60−62.
  • [145] Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022. [146] Martens, S.; Holloway, J. O.; Du Prez, F. E. Click and click inspired chemistry for the design of sequencecontrolled polymers. Macromol. Rapid Commun. 2017, 38, 1700469. [147] Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem. 2018, 9, 2853−2867. [148] Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Progress on catalytic systems used in click polymerization. Macromol. Rapid Commun. 2018, 39, 1800098. [149] Du, J.; Huang, D.; Li, H.; Qin, A.; Tang, B.Z.; Li, Y. Catalyst-free click polymerization of thiol and activated internal alkynes: a facile strategy toward functional poly(β-thioacrylate)s. Macromolecules 2020, 53, 4932−4941. [150] Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022. [151] Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: advances from synthesis to applications. Chem. Soc. Rev. 2015, 44,4091−4130. [152] Sun, F.; Luo, X.; Kang, L.; Peng, X.; Lu, C. Synthesis of hyperbranched polymers and their applications in analytical chemistry. Polym. Chem. 2015, 6, 1214−1225. [153] Gurunathan, T.; Mohanty, S.; Nayak, S. K. Hyperbranched polymers for coating applications: a review. Polym.-Plast. Technol. Eng. 2015, 55, 92−117. [154] Wang, D.; Zhao, T.; Zhu, X.; Yan, D.; Wang, W. Bioapplications of hyperbranched polymers. Chem. Soc. Rev. 2015, 44, 4023−4071. [155] Zhu, Q.; Qiu, F.; Zhu, B.; Zhu, X. Hyperbranched polymers for bioimaging. RSC Adv. 2013, 3, 2071−2083. [156] Feng, G.; Liang, J.; Liu, B. Hyperbranched conjugated polyelectrolytes for biological sensing and imaging. Macromol. Rapid Commun. 2013, 34, 705−715. [157] Shih, H. M.; Wu, R. C.; Shih, P. I.; Wang, C. L.; Hsu, C. S. Synthesis of fluorene-based hyperbranched polymers for solution-processable blue, green, red, and white light-emitting devices. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 696−710. [158] Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Synthesis of hyperbranched polyglycerols by ringopening multibranching polymerization. Macromolecules 1999, 32, 4240−4246. [159] Chen, H.; Kong, J. Hyperbranched polymers from A2 + B3 strategy: recent advances in description and control of fine topology. Polym. Chem. 2016, 7, 3643−3663. [160] Han, J.; Zhao, B.; Gao, Y.; Tang, A.; Gao, C. Sequential click synthesis of hyperbranched polymers via the A2 + CB2 approach. Polym. Chem. 2011, 2, 2175−2178. [161] Zhou, Z.; Yan, D. Kinetic Theory of self-condensing vinyl polymerization. Sci. China: Chem. 2010, 53, 2429−2439. [162] Chen, Y.; Wang, L.; Yu, H.; Zhao, Y.; Sun, R.; Jing, G.; Huang, J.;Khalid, H.; Abbasi, N. M.; Akram, M. Synthesis and application of polyethylene-based functionalized hyperbranched polymers. Prog. Polym. Sci. 2015, 45, 23−43. [163] Segawa, Y.; Higashihara, T.; Ueda, M. Synthesis of hyperbranched polymers with controlled structure. Polym. Chem. 2013, 4,1746−1759. [164] Wang, D.; Jin, Y.; Zhu, X.; Yan, D. Synthesis and applications of stimuli-responsive hyperbranched Polymers. Prog. Polym. Sci. 2017, 64, 114−153. [165] Liu, G.; Chen, P.; Tang, R.; Li, Z. Synthesis and characterization of dendronized hyperbranched polymers through the “A3+B2” Approach. Sci. China: Chem. 2016, 59, 1561−1567. [166] He, B.; Zhen, S.; Wu, Y.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Cu(I)-Catalyzed amino-yne click polymerization. Polym. Chem. 2016, 7, 7375−7382. [167] He, B.; Su, H.; Bai, T.; Wu, Y.; Li, S.; Gao, M.; Hu, R.; Zhao, Z.;Qin, A.; Ling, J.; Tang, B. Z. Spontaneous apmino-yne click polymerization: a powerful tool toward regio- and stereospecific Poly(β-aminoacrylate)s. J. Am. Chem. Soc. 2017, 139, 5437−5443. [168] Chen, X.; Hu, R.; Qi, C.; Fu, X.; Wang, J.; He, B.; Huang, D.; Qin, A.; Tang, B. Z. Ethynylsulfone-based spontaneous amino-yne click polymerization: a facile tool toward regio- and stereoregular dynamic polymers. Macromolecules 2019, 52, 4526−4533. [169] He, B.; Zhang, J.; Wang, J.; Wu, Y.; Qin, A.; Tang, B.Z. Preparation of multifunctional hyperbranched poly(β-aminoacrylate)s by spontaneous amino-yne click polymerization. Macromolecules 2020, 53, 5248−5254. [170] Obhi, N. K.; Peda, D. M.; Kynaston, E. L; Seferos, D. S. Exploring the graft-to synthesis of all-conjugated comb copolymers using azide−alkyne click chemistry. Macromolecules 2018, 51, 8, 2969–2978. [171] Kolb, H.C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery, Drug Discov. Today DDT, 2003, 8, 1128-1137.
  • [172] Teodorescu, F.; Rolland, L.; Ramarao, V.; Abderrahmani, A.; Mandler, D.; Boukherroub, R.; Szunerits, S. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode. Chem. Commun. 2015, 75, 14167-14170. [173] Szunerits, S.; Teodorescu, F.; Boukherroub, R. Electrochemically triggered release of drugs. Eur. Polym. J. 2016, 83, 467–477. [174] Boulahneche, S.; Jijie, R.; Barras, A.; Chekin, F.; Singh, S. K.; Bouckaert, J.; Medjram, M. S.; Kurungot, S.; Boukherroub, R.; Szunerits, S. On demand electrochemical release of drugs from porous reduced graphene oxide modified flexible electrodes. J. Mater. Chem. B 2017, 5, 6557-6565. [175] Hu, S. H.; Fang, R. H.; Chen, Y. W.; Liao, B. J.; Chen, I. W.; Chen, S. Y. Photoresponsive protein–graphene– protein hybrid capsules with dual targeted triggered drug delivery approach for enhanced tumor therapy. Adv. Funct. Mater. 2014, 24, 4144-4155. [176] Wang, C.; Mallela, J.; Garapati, U. S.; Ravi, S.; Chinnasamy, V.; Girard, Y.; Howell, M.; Mohapatra, S. M. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomedicine 2013, 9, 903– 911. [177] Teodorescu, F.; Oz, Y.; Quéniat, G.; Abderrahmani, A.; Foulon, C.; Lecoeur, M.; Sanyal, R.; Sanyal, A.; Boukherroub, R.; Szunerits, S. Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels. J. Controlled Release 2017, 246, 64-173. [178] Teodorescu, F.; Quéniat, G.; Foulon, C.; Lecoeur, M.; Barras, A.; Boulahneche, S.; Medjram, M. S.; Hubert, T.; Abderrahmani, A.; Boukherroub, R.; Szunerits, S. Transdermal skin patch based on reduced graphene oxide: a new approach for photothermal triggered permeation of ondansetron across porcine skin. J. Controll. Releas. 2017, 245, 137-146. [179] Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controll. Releas. 2014, 173, 75-88. [180] Matteini, P.; Tatini, F.; Cavigli, L.; Ottaviano, S.; Ghini, G.; Pini, R. Graphene as a photothermal switch for controlled drug release. Nanoscale 2014, 6, 7947-7953. [181] Guo, C. X.; Ng, S. R.; Khoo, S. Y.; Zheng, X.; Chen, P.; Li, C. M. RGD-peptide functionalized graphene biomimetic live-cell sensorfor real-time detection of nitric oxide molecules. ACS Nano 2012, 6, 6944-6951. [182] Xu, L. Q.; Wang, L.; Zhang, B.; Lim, C. H.; Chen, Y.; Neoh, K. G.; Kang, E.; Fu, G. D. Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. Polymer 2011, 52,2376-2383. [183] Kaminska, I.; Barras, A.; Coffinier, Y.; Lisowski, W.; Roy, S.; Niedziolka-Jonsson, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Siriwardena, A.; Boukherroub, R.; Szunerits, S. Preparation of a responsive carbohydratecoated biointerface based on graphene/azido-terminated tetrathiafulvalene nanohybrid material. ACS Appl. Mater. Interfaces 2012, 4, 5386-5393. [184] Kaminska, I.; Das, M. R.; Coffinier, Y.; Niedziolka-Jonsson, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Boukherroub, R.; Szunerits, S. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Appl. Mater. Interfaces 2012, 4, 1016-1020. [185] Kaminska, I.; Das, M. R.; Coffinier, Y.; Niedziolka-Jonsson, J.; Woisel, P.; Opallo, M.; Szunerits, S.; Boukherroub, R. Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. Chem. Commun. 2012, 48, 1221-1223. [186] Kaminska, I.; Qi, W.; Barras, A.; Sobczak, J.; Niedziolka-Jonsson, J.; Woisel, P.; Lyskawa, J.; Laure, W.; Opallo, M.; Li, M.; Boukherroub, R.; Szunerits, S. Thiol-yne click reaction on alkynyl-dopamine modified reduced graphene oxide (rGO). Chem. Eur. J. 2013, 19, 8673-8678. [187] Qu, S.; Li, M.; Xie, L.; Huang, X.; Yang, J.; Wang, N.; Yang, S. Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 2013, 7, 4070-4081. [188] Manova, R. K.; Pujari, S. P.; Weijers, C. A. G. M.; Zuilhof, H.; van Beek, T. A. Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne–azide cycloaddition reactions. Langmuir 2012, 28, 8651–8663. [189] Oz,Y.; Barras, A.; Sanyal, R.; Boukherroub, R.; Szunerits, S.; Sanyal,A.; Functionalization of reduced graphene oxide via thiol–maleimide “click” chemistry: facile fabrication of targeted drug delivery vehicles. ACS Appl. Mater. Interfaces 2017, 9, 39, 34194–34203. [190] Liu, X.; Gong, P.; Song, P.; Xie, F.; Miller, A. L.; Chenc S.; Lu, L. Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polym. Chem. 2019, 10, 705-717. [191] Alcaraz, N.; Liu, Q.; Hanssen, E.; Johnston, A.; Boyd, B. J. Clickable cubosomes for antibody-free drug targeting and imaging applications. Bioconjugate Chem. 2018, 29, 1, 149–157.
  • [192] Bostan, M.S.; Senol, M.; Cig, T.; Peker, I.; Goren, A.C.; Ozturk, T.; Eroglu, M.S. Controlled release of 5- aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels. Int. J. Biological Macromolecul. 2013, 52, 177– 183. [193] Osman, A.; Oner, E.T.; Eroglu, M.S. Novel levan and pNIPA temperature sensitive hydrogels for 5- ASAcontrolled release. Carbohydrate Polymers 2017, 165, 61–70. [194] Eyigor, A.; Bahadori, F.; Yenigun, V.B.; Eroglu, M.S. Beta-Glucan based temperature responsive hydrogels for 5-ASA delivery. Carbohydrate Polymers 2018, 201 454-463. [195] Balakrishnan, B.; Banerjee. R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 2011, 111, 4453–4474. [196] Zhao, J.; Hussain, M.; Wang, M.; Li, Z.; He. N. Embedded 3D printing of multi-internal surfaces of hydrogels. Addit. Manuf. 2020, 32, 101097. [197] Wang, T.; Qu, G.; Wang, C.; Cheng, Y.; Shang, J.; Zheng, J.; Feng, Z.; Chen, Q.; He, N.; Importance of polyacrylamide hydrogel diverse chains and cross-linking density for cell proliferation, aging, and death. Langmuir 2019, 35, 13999-14006. [198] Zhu, J. J.; Guan, S.; Hu, Q.Q.; Gao, G. H.; Xu, K.; Wang, P. X. Tough and pH-sensitive hydroxypropyl guar gum/polyacrylamide hybrid double-network hydrogel. Chem. Eng. J. 2016, 306, 953-960. [199] Roy, S. G.; Kumar, A.; De, P. Amino acid containing cross-linked co-polymer gels: pH, thermo and salt responsiveness. Polymer 2016, 85, 1-9. [200] P. Li, J. Zhang, C. M. Dong, Photosensitive poly(o-nitrobenzyloxycarbonyl-L-lysine)-b-PEO polypeptide copolymers: synthesis, multiple self-assembly behaviors, and the photo/pH-thermo-sensitive hydrogels. Polym. Chem. 2017, 8, 7033-7043. [201] Yin, S.; Ma, Z. F. “Smart” sensing interface for the improvement of electrochemical immunosensor based on enzyme-Fenton reaction triggered destruction of Fe3+ cross-linked alginate hydrogel. Sens. Actuators B 2019, 281, 857-863. [202] Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Delivery Rev. 2011, 63,789-808. [203] Cheng, X.; Jin, Y.; Sun, T.; Qi, R.; Li, H.; Fan, W. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery. Colloids Surf. B 2016, 141,44-52. [204] Das, D.; Pal, S. Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin. Int. J. Biol. Macromol. 2015, 72, 171-178. [205] Grim, J. C.; Marozas, I. A.; Anseth, K. S. Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. J. Controll.Releas. 2015, 219,95-106. [206] Lowe, A. B. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym. Chem. 2014, 5, 4820-4870.
  • [207] Ding, H.; Li, B.; Liu, Z.; Liu, G.; Pu, S.; Feng, Y.; Jia, D.; Zhou, Y. Decoupled pH- and thermo-responsive injectable chitosan/PNIPAM hydrogel via thiol-ene click chemistry for potential applications in tissue engineering. Healthcare Mater. 2020, 9,2000454
  • [208] Astrain, G.C.; Avérous, L. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydrate Polymers 2018, 190, 271-280.
APA Amna B, Ozturk T (2021). Click chemistry: a fascinating method of connecting organic groups. , 97 - 120. 10.25135/acg.oc.100.21.03.2006
Chicago Amna Bibi,Ozturk Turan Click chemistry: a fascinating method of connecting organic groups. (2021): 97 - 120. 10.25135/acg.oc.100.21.03.2006
MLA Amna Bibi,Ozturk Turan Click chemistry: a fascinating method of connecting organic groups. , 2021, ss.97 - 120. 10.25135/acg.oc.100.21.03.2006
AMA Amna B,Ozturk T Click chemistry: a fascinating method of connecting organic groups. . 2021; 97 - 120. 10.25135/acg.oc.100.21.03.2006
Vancouver Amna B,Ozturk T Click chemistry: a fascinating method of connecting organic groups. . 2021; 97 - 120. 10.25135/acg.oc.100.21.03.2006
IEEE Amna B,Ozturk T "Click chemistry: a fascinating method of connecting organic groups." , ss.97 - 120, 2021. 10.25135/acg.oc.100.21.03.2006
ISNAD Amna, Bibi - Ozturk, Turan. "Click chemistry: a fascinating method of connecting organic groups". (2021), 97-120. https://doi.org/10.25135/acg.oc.100.21.03.2006
APA Amna B, Ozturk T (2021). Click chemistry: a fascinating method of connecting organic groups. Organic Communications, 14(2), 97 - 120. 10.25135/acg.oc.100.21.03.2006
Chicago Amna Bibi,Ozturk Turan Click chemistry: a fascinating method of connecting organic groups. Organic Communications 14, no.2 (2021): 97 - 120. 10.25135/acg.oc.100.21.03.2006
MLA Amna Bibi,Ozturk Turan Click chemistry: a fascinating method of connecting organic groups. Organic Communications, vol.14, no.2, 2021, ss.97 - 120. 10.25135/acg.oc.100.21.03.2006
AMA Amna B,Ozturk T Click chemistry: a fascinating method of connecting organic groups. Organic Communications. 2021; 14(2): 97 - 120. 10.25135/acg.oc.100.21.03.2006
Vancouver Amna B,Ozturk T Click chemistry: a fascinating method of connecting organic groups. Organic Communications. 2021; 14(2): 97 - 120. 10.25135/acg.oc.100.21.03.2006
IEEE Amna B,Ozturk T "Click chemistry: a fascinating method of connecting organic groups." Organic Communications, 14, ss.97 - 120, 2021. 10.25135/acg.oc.100.21.03.2006
ISNAD Amna, Bibi - Ozturk, Turan. "Click chemistry: a fascinating method of connecting organic groups". Organic Communications 14/2 (2021), 97-120. https://doi.org/10.25135/acg.oc.100.21.03.2006