Yıl: 2021 Cilt: 31 Sayı: 1 Sayfa Aralığı: 11 - 18 Metin Dili: Türkçe DOI: 10.29133/yyutbd.811158 İndeks Tarihi: 29-07-2022

Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu

Öz:
Küresel ısınma ve insan popülasyonunun sürekli artması besin kaynağı üzerinde baskı oluşturmaktadır. Soya fazlaca protein ve yağ içermesinden dolayı insan beslenmesinde önemli rol oynamaktadır. Bu çalışmada 12 soya çeşidinin (Nova, Nazlican, SA88, Ataem7, Arısoy, A3127, Türksoy, Adasoy, Yemsoy, ANP2018, Yeşilsoy ve Samsoy) 6 IPBS markörü ile genetik ilişkisi incelenmiştir. IPBS analizi sonucuna göre toplam 44 polimorfik bant elde edilmiş olup ortalama polimorfizm oranı %85.83 olmuştur. Primer başına elde edilen ortalama polimorfik bant sayısı 7.33 olarak belirlenmiştir. Geneotipler arasında Dice benzerlik indeksi 0.1 ile 0.9091 arasında değişmiş olup ortalama benzerlik indeksi 0.4506 olarak hesaplanmıştır. Analizlerin sonuçlarına göre, en yakın akrabalık gösteren genotiplerin Yeşilsoy ile Arısoy çeşitleri iken, en az benzeyen genotiplerin ise Samsoy ile Yemsoy çeşitleridir. Sonuç olarak, IPBS markörleri soya ıslahı programlarında uygun ebeveynlerin seçiminde genotipleri karakterize etmek için etkili bir şekilde kullanılabilir.
Anahtar Kelime: IPBS Genetik ilişki Glycine max L. ıslah

Molecular Characterization of Some Soybean (Glycine max L.) Varieties

Öz:
Global warming and the continuous increasing in human population have adverse effects on the food source. Soybean plays a significant role in human nutrition due to its high protein and fat content. In this study, the genetic relationship of 12 soybean varieties (Nova, Nazlican, SA88, Ataem7, Arısoy, A3127, Türksoy, Adasoy, Yemsoy, ANP2018, Yeşilsoy and Samsoy) was investigated using 6 IPBS markers. According to the results of the IPBS analysis, totally 44 polymorphic bands were obtained and the average polymorphism rate was 85.83%. The average number of polymorphic bands obtained per primer was determined as 7.33. The Dice similarity index between genotypes varied between 0.1 and 0.9091 with the average being 0.4506. According to the results of the analysis, the genotypes showing the closest relationship are Yeşilsoy and Arısoy varieties, while the farthest genotypes are Samsoy and Yemsoy. As a result, IPBS markers can be used effectively to characterize genotypes in the selection of suitable parents in soybean breeding programs
Anahtar Kelime: breeding

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Andeden, E. E., Baloch, F. S., Derya, M., Kilian, B., & Özkan, H. (2013). iPBS-Retrotransposonsbased genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology, 22(4), 453-466.
  • Arıoğlu, H. H. (2007). Yağ Bitkileri Yetiştirme ve Islahı Ders Kitapları. Çukurova Üniversitesi Ziraat Fakültesi Ofset Atölyesi, Adana.
  • Baloch, F. S., Alsaleh, A., de Miera, L. E. S., Hatipoğlu, R., Çiftçi, V., Karaköy, T., Yıldız, M., & Özkan, H. (2015). DNA based IPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochemical Systematics and Ecology, 61, 244-252.
  • Baránek, M., Meszaros, M., Sochorova, J., Cechova, J., & Roddova, J. (2012). Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovicka. Scientia Horticulturae, 143, 1-6.
  • Brick, A. F., & Sivolap, Y. M. (2001). Molecular genetic identification and certification of soybean (Glycine max L.) cultivars. Russian Journal of Genetics, 37(9), 1061-1067.
  • Chowdhury, A. K., Srinives, P., Tongpamnak, P., Saksoong, P., & Chatwachirawong, P. (2002). Genetic relationship among exotic soybean introductions in Thailand: Consequence for varietal registration. Science Asia, 28, 227-239.
  • Cömertpay, G., Baloch, F. S., Kilian, B., Ülger, A. C., & Özkan, H. (2012). Diversity assessment of Turkish maize landraces based on fluorescent labelled SSR markers. Plant Molecular Biology Reporter, 30(2), 261-274.
  • Demirel, F. (2020). Bazı siyez buğdaylarının ISSR Markörleri ile karakterizasyonu. Journal of Agriculture, 3(2), 33-39.
  • Dice, L. R., (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297-302.
  • Escribano, M. R., Santalla, M., Casquero, P. A., & De Ron, A. M. (1998). Patterns of genetic diversity in landraces of commonbean (Phaseolus vulgaris L.) from Galicia. Plant Breeding, 117(1), 49-56.
  • Gailite, A., & Rungis, D., (2012). An initialinvestigation of the taxonomic status of Saussurea esthonica Baer ex Rupr. utilising DNA markers and sequencing. Plant Systematics and Evolution, 298, 913-919.
  • Ganeva, G., Korzun, V., Landjeva, S., Popova, Z., & Christov, N. K. (2010). Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellite markers. Genetic Resources and Crop Evolution, 57(2), 273-285.
  • Gurcan, K., Demirel, F., Tekin, M., Demirel, S., & Akar, T. (2017). Molecular and agromorphological characterization of ancient wheat landraces of Turkey. BMC Plant Biology, 17(1), 171.
  • Kalendar, R., Antonius, K., Smýkal, P., & Schulman, A. H. (2010). iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121(8), 1419-1430.
  • Kinney, A. J. A., & Clemente, T. E. (2004). Modifying soybean oil for enhanced performance in biodisel blends. Fuel Processing Technology, 86(10), 1137-1147.
  • Koçak, M., Karataş, M., Alp, Ş., Baloch, F., & Yıldız, M. (2020). Van gölü havzasından toplanan terslale (Fritillaria imperialis L.) genotiplerinde genetik farklılığın iPBS retrotranspozon markırları ile belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(2) , 398-406.
  • Kökten, K., Seydosoğlu, S., Kaplan, M., & Boydak, E., (2014). Forage nutritive value of soybean varieties. Legume Research-An International Journal, 37(2), 201-206.
  • Liu, K., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128-2129.
  • Manifesto, M. M., Schlatter, A. R., Hopp, H. E., Suárez, E. Y., & Dubcovsky, J. (2001). Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop science, 41(3), 682-690.
  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323.
  • Nkongolo, K., Alamri, S., & Michael, P. (2020). Assessment of Genetic Variation in Soybean (Glycine max) Accessions from International Gene Pools Using RAPD Markers: Comparison with the ISSR System. American Journal of Plant Sciences, 11(9), 1414-1428.
  • Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecularecologynotes, 6(1), 288-295.
  • Polat, N. (2015). Bazı soya türevlerinin sığır ve tavuk etlerinin emülsiyon karakteristikleri üzerine etkisi. (PhD), Selcuk University, Institute of Natural and Applied Science, Konya, Turkey.
  • Rohlf, J. F. (2000). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York.
  • Sarımehmetoğlu, O. (2006). The determination of some important quality characteristics of soybean grown in farmer condotions in Çukurova region. Master Thesis. Cukurova University, Institute of Natural and Applied Science, Adana, Turkey.
  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
  • Smýkal, P., Bačová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A. H., & Pavelek, M. (2011). Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 122(7), 1385-1397.
  • Stathi, E., Kougioumoutzis, K., Abraham, E. M., Trigas, P., Ganopoulos, I., Avramidou, E. V., & Tani, E. (2020). Population genetic variability and distribution of the endangered Greek endemic Cicer graecum under climate change scenarios. AoB Plants, 12(2), plaa007.
  • Ude, G. N., Kenworthy, W. J., Costa, J. M., Cregan, P. B., & Alvernaz, J. (2003). Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by amplified fragment length polymorphism. Crop Science, 43(5), 1858-1867.
  • Yorgancılar, M., Yakışır, E., & Erkoyuncu, M. T. (2015). Moleküler markörlerin bitki ıslahında kullanımı. Bahri Dağdaş Bitkisel Araştırma Dergisi, 4(2), 1-12.
APA KUMLAY A, Demirel S, DEMIREL F, YILDIRIM B (2021). Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. , 11 - 18. 10.29133/yyutbd.811158
Chicago KUMLAY Ahmet Metin,Demirel Serap,DEMIREL FATIH,YILDIRIM BÜNYAMIN Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. (2021): 11 - 18. 10.29133/yyutbd.811158
MLA KUMLAY Ahmet Metin,Demirel Serap,DEMIREL FATIH,YILDIRIM BÜNYAMIN Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. , 2021, ss.11 - 18. 10.29133/yyutbd.811158
AMA KUMLAY A,Demirel S,DEMIREL F,YILDIRIM B Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. . 2021; 11 - 18. 10.29133/yyutbd.811158
Vancouver KUMLAY A,Demirel S,DEMIREL F,YILDIRIM B Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. . 2021; 11 - 18. 10.29133/yyutbd.811158
IEEE KUMLAY A,Demirel S,DEMIREL F,YILDIRIM B "Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu." , ss.11 - 18, 2021. 10.29133/yyutbd.811158
ISNAD KUMLAY, Ahmet Metin vd. "Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu". (2021), 11-18. https://doi.org/10.29133/yyutbd.811158
APA KUMLAY A, Demirel S, DEMIREL F, YILDIRIM B (2021). Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 31(1), 11 - 18. 10.29133/yyutbd.811158
Chicago KUMLAY Ahmet Metin,Demirel Serap,DEMIREL FATIH,YILDIRIM BÜNYAMIN Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 31, no.1 (2021): 11 - 18. 10.29133/yyutbd.811158
MLA KUMLAY Ahmet Metin,Demirel Serap,DEMIREL FATIH,YILDIRIM BÜNYAMIN Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, vol.31, no.1, 2021, ss.11 - 18. 10.29133/yyutbd.811158
AMA KUMLAY A,Demirel S,DEMIREL F,YILDIRIM B Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2021; 31(1): 11 - 18. 10.29133/yyutbd.811158
Vancouver KUMLAY A,Demirel S,DEMIREL F,YILDIRIM B Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2021; 31(1): 11 - 18. 10.29133/yyutbd.811158
IEEE KUMLAY A,Demirel S,DEMIREL F,YILDIRIM B "Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu." Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 31, ss.11 - 18, 2021. 10.29133/yyutbd.811158
ISNAD KUMLAY, Ahmet Metin vd. "Bazı Soya (Glycine max L.) Çeşitlerinin IPBS Markörleriyle Moleküler Karakterizasyonu". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 31/1 (2021), 11-18. https://doi.org/10.29133/yyutbd.811158