Yıl: 2021 Cilt: 31 Sayı: 1 Sayfa Aralığı: 30 - 41 Metin Dili: İngilizce DOI: 10.29133/yyutbd.797101 İndeks Tarihi: 29-07-2022

Determination of Radioactivity Levels in Different Mushroom Species from Turkey

Öz:
Radioactivity in the environment occurs due to natural, terrestrial, extra-terrestrial factors or caused by human activity. Foodstuffs such as plants and mushrooms that grown in the soil which containing radioactive elements can absorb radioactive elements from the soil. Wild mushrooms can accumulate many types of toxicological, nutritional, and radioactive elements. Knowing the levels of radioactivity in the foodstuffs is of great importance for the protection of human health. In this study, the activity concentrations of the naturally occurring ${}^{238}U$, ${}^{232}Th$, ${}^{40}K$ nuclides and artificially occurring ${}^{137}Cs$ nuclide were determined and annual effective doses and excess lifetime cancer risk values were calculated in mushrooms commonly consumed by the Turkish people. Fifteen types of mushroom samples were collected from different locations of Turkey. The results showed that the activity concentrations of ${}^{238}U$, ${}^{232}Th$, ${}^{40}K$ and ${}^{137}Cs$ varied from 9.2±1.6 to 75.4±8.8 Bq $kg^{-1}$, 10.9±1.6 to 76.3±8.9 Bq $kg^{-1}$, 925.9±29.0 to 3848.0±73.2 Bq $kg^{-1}$ and 6.1±1.1 to 2824.8±79.8 Bq $kg^{-1}$, respectively. The mean total annual effective dose was found to be 11.5 μSv $y^{-1}$. ${}^{40}K$ radionuclide was the highest contributor to the mean total annual effective dose as 5.35 μSv $y^{-1}$. The mean excess lifetime cancer risk (ELCR) caused by consumption of mushrooms in the study was determined as 4.6 x$10^{-5}$.
Anahtar Kelime: Annual effective dose Radionuclide Lifetime cancer risk Mushroom Radioactivity

Türkiye'den Farklı Mantar Türlerinde Radyoaktivite Seviyelerinin Belirlenmesi

Öz:
Radyoaktivite; doğal, karasal, dünya dışı faktörler veya insan aktivitesinden kaynaklanmaktadır. Radyoaktif elementler içeren toprakta yetişen bitkiler ve mantarlar gibi gıda maddeleri, topraktaki radyoaktif elemetleri absorbe edebilmektedir. Yabani olarak yetişen mantarlar pek çok türde toksikolojik, besleyici ve radyoaktif element biriktirebilmektedir. Gıda maddelerindeki radyoaktivite seviyelerinin bilinmesi insan sağlığının korunması açısından büyük önem taşımaktadır. Bu çalışmada, Türk halkı tarafından yaygın olarak tüketilen mantarlarda doğal olarak oluşan ${}^{238}U$, ${}^{232}Th$ ve ${}^{40}K$ nüklidleri ile yapay olarak oluşan ${}^{137}Cs$ nüklidinin aktivite konsantrasyonları, yıllık etkin dozlar ve yaşam boyu kanser riski değerleri belirlenmiştir. Türkiye'nin farklı yerlerinden 15 çeşit mantar örneği toplanmıştır. Sonuçlar ${}^{238}U$, ${}^{232}Th$, ${}^{40}K$ ve ${}^{137}Cs$ aktivite konsantrasyonlarının sırasıyla 9.2±1.6 - 75.4±8.8 Bq $kg^{-1}$, 10.9±1.6 - 76.3±8.9 Bq $kg^{-1}$, 925.9±29.0 - 3848.0±73.2 Bq $kg^{-1}$ ve 6.1±1.1 - 2824.8±79.8 Bq $kg^{-1}$ arasında değiştiğini göstermiştir. Ortalama toplam yıllık etkin doz 11.5 μSv $y^{-1}$ olarak bulunmuştur. ${}^{40}K$ radyonüklidi, ortalama toplam yıllık etkin doza 5.35 μSv $y^{-1}$ ile en yüksek katkıda bulunan radyonüklid olarak belirlenmiştir. Çalışmada yer alan mantarların tüketiminden kaynaklanan ortalama yaşam boyu kanser riski (ELCR) değeri 4.6 x$10^{-5}$.olarak belirlenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abbady, A. (2006). Level of natural radionuclides in foodstuffs and resultant annual ingestion radiation dose. Nuclear Science and Techniques, 17, 297-300.
  • Akça, S. (2011). Mantar çeşitlerinde elemental analiz ve doğal radyoaktivite ölçümü. Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Akça, S., Sögüt, Ö., Küçükönder, E., Karatepe, S., & Dogru, M. (2014). Radioactivity levels in some mushroom species and consequent doses. Asian Journal of Chemistry, 26, 879-882.
  • Altıkulaç, A., Turhan,¸S., & Gümüş, H. (2016). Activity concentration of terrestrial and anthropogenic radionuclides (226Ra, 222Rn, 232Th, 40K, and 137Cs) in soil samples. Environmental Earth Sciences, 75, 1-8.
  • Baeza, A., Hernandez, S., Guillen, J., Moreno, G., Manjoon, J. L., & Pascuala, R. (2004). Radiocaesium and natural gamma emitters in mushrooms collected in Spain. Science of the Total Environment, 408, 84-91.
  • Baeza, A., Guillen, F. J., Salas, A., & Manjon, J. L. (2006). Distribution of radionuclides in different parts of a mushroom: Influence of the degree of maturity. Science of the Total Environment, 359, 255-266.
  • Bannai, T., Yoshida, S., Muramatsu, Y., & Suzuki, A. (2005). Uptake of radiocesium by hypha of Basidiomycetes radiotracer experiments. Journal of Nuclear and Radiochemical Sciences, 6, 111-113.
  • Bazala, M. A., Golda, K., & Bystrzejewska-Piotrowska, G. (2008). Transport of radiocesium in mycelium and its translocation to fruitbodies of a saprophytic macromycete. Journal of Environmental Radioactivity, 99, 1200-1202.
  • Borovicka, J., Kubrova, J., Rohovec, J., Randa, Z., & Dunn, C. E. (2011). Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? Biometals, 24, 837-845.
  • Bulam, S., Üstün, N. Ş., & Pekşen, A. (2019). Health benefits of Ganoderma lucidum as a medicinal mushroom. Turkish Journal of Agriculture - Food Science and Technology, 7, 84-93.
  • Castro, L. P., Maihara, V. A., Silva, P. S. C., & Figueira, R. C. L. (2012). Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. Journal of Environmental Radioactivity, 113, 150-154.
  • Changizi, V., Angaji, M., Zare, M. R., & Abbasnejad, K. (2012). Evaluation of 226Ra, 232Th, 137Cs and 40K “Agaricus bisporus” activity in cultivated edible mushroom formed in Tehran provinceIran. Iranian Journal of Medical Physics, 9, 239-244.
  • Çevik, M. (2019). Mantarcılık sektörü son 10 yılda daha da gelişti. Türk Tarım ve Orman Dergisi, MartNisan, 10-12. Falandysz, J., & Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Applied Microbiology and Biotechnology, 97, 477-501.
  • Gaso, M. I., Segoviaa, N., Herrera, T., Perez-Silva, E., Cervantes, M. L., Quintero, E., Palacios, J., & Acosta, E. (1998). Radiocesium accumulation in edible wild mushrooms from coniferous forests around the Nuclear Centre of Mexico. The Science of the Total Environment, 223, 119-129.
  • Gaso, M. I., Segovia, N., Morton, O., Cervantes, M. L., Godinez, L., Pena, P., & Acosta, E. (2000). 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. Science of the Total Environment, 262, 73-89.
  • Gürgen, A., Yıldız, S., Çevik, U., & Çelik, A. (2019). Radionuclide activity concentrations of Agaricus bisporus and Pleurotus ostreatus mushrooms cultivated in different commercial companies. Journal of International Environmental Application and Science, 14, 13-20.
  • Guillen, J., & Baeza, A. (2014). Radioactivity in mushrooms: a health hazard? Food Chemistry, 154, 14-25.
  • Gwynn, J. P., Nalbandyan, A., & Rudolfsen, G. (2013). 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. Journal of Environmental Radioactivity, 116, 34-41.
  • Hatra, G. (2018). Radioactive pollution: An overview. The Holistic Approach to Environment, 8, 48-65.
  • IAEA. (2011). International Atomic Energy Agency. Safety Standards for Protecting People and the Environment, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Vienna, Austria.
  • IAEA. (2016). International Atomic Energy Agency. Criteria for Radionuclide Activity Concentrations for Food and Drinking Water. IAEA-TECDOC-1788, Vienna, Austria.
  • ICRP. (2007). International Commission on Radiological Protection. Annals of the ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37, 2-4.
  • Kalac, P. (2001). A review of edible mushroom radioactivity. Food Chemistry, 75, 29-35.
  • Kalac, P., & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69, 273-281.
  • Kammerer, L., Hiersche, L., & Wirth, E. (1994). Uptake of radiocesium by different species of mushrooms. Journal of Environmental Radioactivity, 23, 135-150.
  • Karadeniz, Ö., & Yaprak, G. (2007). Dynamic equilibrium of radiocesium with stable cesium within the soil-mushroom system in Turkish pine forest. Environmental Pollution, 148, 316-324.
  • Karadeniz, Ö., & Yaprak, G. (2010). 137Cs, 40K, alkali–alkaline earth element and heavy metal concentrations in wild mushrooms from Turkey. Journal of Radioanalytical and Nuclear Chemistry, 285, 611-619.
  • Kurnaz, A., Gezelge, M., Hançerlioğulları, A., Çetiner, M. A., & Turhan, Ş. (2016). Radionuclides content in grape molasses soil samples from Central Black Sea region of Turkey. Human and Ecological Risk Assessment: An International Journal, 22, 1375-1385.
  • Kuwahara, C., Fukumoto, A., Ohsone, A., Furuya, N., Shibata, H., Sugiyama, H., & Kato, F. (2005). Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils. The Science of the Total Environment, 345, 165-173
  • Lehto, J., Vaaramaa, K., & Leskinen, A. (2013). 137Cs, 239,240Pu and 241Am in boreal forest soil and their transfer into wild mushrooms and berries. Journal of Environmental Radioactivity, 116, 124- 132.
  • Malinowska, E., Szefer, P., & Bojanowski, R. (2006). Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chemistry, 97, 19-24.
  • Mazzilli, B. P., Silva, P. S. C., & Nisti, M. B. (2002). Enhancement of natural radioactivity in the surrounding of a phosphate fertilizer complex in Santos basin, Brazil. Radioprotection, 37, 795- 799.
  • Mietelski, J. W., Baeza, A. S., Guillen, J., Buzinny, M., Tsigankov, N., Gaca, P., Jasinska, M., & Tomankiewicz, E. (2002). Plutonium and other alpha emitters in mushrooms from Poland, Spain and Ukraine. Applied Radiation and Isotopes, 56, 717-729.
  • Mietelski, J. W., Dubchak, S., Blazeja, S., Anielska, T., & Turnau, K. (2010). 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. Journal of Environmental Radioactivity, 101, 706-711.
  • Pekşen, A., & Akdeniz, H. (2012). Organik ürün olarak doğa mantarları. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 8, 34-40.
  • Phillips, R. (1994). Mushrooms and Other Fungi of Great Britain and Europe. Milan, Italy.
  • Rosa, M. M. L., Maihara, V. A., Taddei, M. H. T., Silva, M. A., & Ferreira, M. T. (2011). Determination of 228Th, 232Th, and 228Ra in wild mushroom from a naturally high radioactive region in Brazil. International Nuclear Atlantic Conference, Belo Horizonte, Brazil.
  • Saba, M., & Falandysz, J. (2020). The effects of different cooking modes on the 137Cs, 40K, and total K content in Boletus edulis (King Bolete) mushrooms. Environmental Science and Pollution Research, 1-6.
  • Taira, Y., Hayashidai, N., Brahmanandhan, G. M., Nagayama, Y., Yamashita, S., Takahashi, J., Gutenitc, A., Kazlovsky, A., Urazalin, M., & Takamura, N. (2011). Current concentration of artificial radionuclides and estimated radiation doses from 137Cs around the Chernobyl nuclear power plant, the Semipalatinsk nuclear testing site, and in Nagasaki. Journal of Radiation Research, 52, 88-95.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100, 49-53.
  • Turhan, Ş., Köse, A., & Varinlioğlu, A. (2007). Radioactivity levels in some wild edible mushroom species in Turkey. Isotopes in Environmental and Health Studies, 43, 249-256.
  • Türkekul, İ., Yeşilkanat, C. M., Ciriş, A., Kölemen, U., & Çevik, U. (2018). Interpolated mapping and investigation of environmental radioactivity levels in soils and mushrooms in the Middle Black Sea Region of Turkey. Isotopes in Environmental and Health Studies, 54, 262-273.
  • UNSCEAR. (1988). United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risk of Ionizing Radiation, United Nations, New York.
  • WHO. (1989). World Health Organization, Evaluation of Certain Food Additives and Contaminants, in: Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives.
  • Yamaç, M., Yıldız, D., Sarıkürkcü, C., Çelikkollu, M., & Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103, 263-267.
  • Yılmaz, A., Yıldız, S., Çelik, A., & Çevik, U. (2016). Determination of heavy metal and radioactivity in Agaricus campestris mushroom collected from Kahramanmaraş and Erzurum proviences. Turkish Journal of Agriculture - Food Science and Technology, 4, 208-215.
  • Yoshida, S., Muramatsu, Y., Dvornik, A. M., Zhuchenko, T. A., & Linkov, I. (2004). Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. Journal of Environmental Radioactivity, 75, 301-313.
APA Peksen A, KURNAZ A, turfan n, Kibar B (2021). Determination of Radioactivity Levels in Different Mushroom Species from Turkey. , 30 - 41. 10.29133/yyutbd.797101
Chicago Peksen Aysun,KURNAZ ASLI,turfan nezahat,Kibar Beyhan Determination of Radioactivity Levels in Different Mushroom Species from Turkey. (2021): 30 - 41. 10.29133/yyutbd.797101
MLA Peksen Aysun,KURNAZ ASLI,turfan nezahat,Kibar Beyhan Determination of Radioactivity Levels in Different Mushroom Species from Turkey. , 2021, ss.30 - 41. 10.29133/yyutbd.797101
AMA Peksen A,KURNAZ A,turfan n,Kibar B Determination of Radioactivity Levels in Different Mushroom Species from Turkey. . 2021; 30 - 41. 10.29133/yyutbd.797101
Vancouver Peksen A,KURNAZ A,turfan n,Kibar B Determination of Radioactivity Levels in Different Mushroom Species from Turkey. . 2021; 30 - 41. 10.29133/yyutbd.797101
IEEE Peksen A,KURNAZ A,turfan n,Kibar B "Determination of Radioactivity Levels in Different Mushroom Species from Turkey." , ss.30 - 41, 2021. 10.29133/yyutbd.797101
ISNAD Peksen, Aysun vd. "Determination of Radioactivity Levels in Different Mushroom Species from Turkey". (2021), 30-41. https://doi.org/10.29133/yyutbd.797101
APA Peksen A, KURNAZ A, turfan n, Kibar B (2021). Determination of Radioactivity Levels in Different Mushroom Species from Turkey. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 31(1), 30 - 41. 10.29133/yyutbd.797101
Chicago Peksen Aysun,KURNAZ ASLI,turfan nezahat,Kibar Beyhan Determination of Radioactivity Levels in Different Mushroom Species from Turkey. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 31, no.1 (2021): 30 - 41. 10.29133/yyutbd.797101
MLA Peksen Aysun,KURNAZ ASLI,turfan nezahat,Kibar Beyhan Determination of Radioactivity Levels in Different Mushroom Species from Turkey. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, vol.31, no.1, 2021, ss.30 - 41. 10.29133/yyutbd.797101
AMA Peksen A,KURNAZ A,turfan n,Kibar B Determination of Radioactivity Levels in Different Mushroom Species from Turkey. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2021; 31(1): 30 - 41. 10.29133/yyutbd.797101
Vancouver Peksen A,KURNAZ A,turfan n,Kibar B Determination of Radioactivity Levels in Different Mushroom Species from Turkey. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2021; 31(1): 30 - 41. 10.29133/yyutbd.797101
IEEE Peksen A,KURNAZ A,turfan n,Kibar B "Determination of Radioactivity Levels in Different Mushroom Species from Turkey." Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 31, ss.30 - 41, 2021. 10.29133/yyutbd.797101
ISNAD Peksen, Aysun vd. "Determination of Radioactivity Levels in Different Mushroom Species from Turkey". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 31/1 (2021), 30-41. https://doi.org/10.29133/yyutbd.797101