Yıl: 2020 Cilt: 13 Sayı: 2 Sayfa Aralığı: 847 - 856 Metin Dili: İngilizce DOI: 10.18185/erzifbed.680647 İndeks Tarihi: 05-01-2022

Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed

Öz:
Pyrolytic degradation behavior of pistachio shell and cranberry seed were investigated by means of thermal analysis techniques such as thermogravimetric (TG) and derivative thermogravimetric (DTG). Pyrolysis study of pistachio shell and cranberry seed, which are the sources of plant biomass, are carried out at four different heating rates (2.5, 5, 10 and 20 K min-1 ) in the temperature range of 300-1173 K in a TGA equipment. The activation energy and pre-exponential factor were determined using different methods as Kissinger–Akahira– Sunose (KAS) and Flyn–Wall–Ozawa (FWO). The average activation energies (Ea) and pre-exponential factor (A) obtained from both models for the pyrolytic degradation behavior of pistachio shell and cranberry seed were found as: Ea=146.5 kJ mol-1 and A=17.99 min−1 for KAS; Ea=159.3 kJ mol-1 and A= 34.15 min−1 for FWO and Ea=191.1 kJ mol-1 and A=25.93 min−1 for KAS; Ea=210.7 kJ mol-1 and A= 42.63 min−1 for FWO, respectively.
Anahtar Kelime:

Şam Fıstığı Kabuğu ve Kızılcık Çekirdeğinin Piroliz Kinetiğinin Belirlenmesi

Öz:
Şam fıstığı kabuğu ve kızılcık çekirdeğinin pirolitik bozunma davranışı, termogravimetrik (TG) ve diferansiyel termogravimetrik (DTG) gibi termal analiz teknikleri ile araştırılmıştır. Bitki biyo kütlesinin kaynağı olan şam fıstığı kabuğu ve kızılcık çekirdeğinin piroliz çalışması, dört farklı ısıtma hızında (2.5, 5, 10 ve 20 K min-1 ) TGA cihazında 300-1173 K sıcaklık aralığında yapılmıştır. Aktivasyon enerjisi ve üstel faktör, Kissinger – Akahira – Sunose (KAS) ve Flyn – Wall – Ozawa (FWO) gibi farklı iki yöntem kullanılarak belirlenmiştir. Şam fıstığı kabuğu ve kızılcık çekirdeğinin pirolitik bozunma davranışı için her iki modelden elde edilen ortalama aktivasyon enerjileri (Ea) ve ön üstel faktör (A) şu şekilde bulunmuştur: KAS için Ea = 146.5 kJ mol-1 ve A = 17.99 min−1 ; Ea = 159.3 kJ mol-1 ve A min−1 = 34.15, FWO ve Ea = 191.1 kJ mol-1 ve A = 25.9 min−1 3; KAS için; Ea = 210.7 kJ mol-1 ve A = 42.63 min−1 FWO için.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmed, A., Afolabi, E.A.,Garba, M.U., Musa, U., Alhassan, A. and Ishaq, I. (2019). Effect of particle size on thermal decomposition and devolatilization kinetics of melon seed shell, Chemical Engineering Communications, 206, 9, 1228–1240.
  • Akahira, T. (1971), Sunose Method of Determining Activation Deterioration Constant of Electrical Insulating Materials, Res. Rep. Chiba Inst. Technol. (Sci. Technol.), 16, 22-31.
  • Çağlar, A., Demirbaş, A. (2000). Conversion of Cotton Cocoon Shell to Liquid Products by Pyrolysis, Energy Conversion and Management, 41, 1749 – 1756.
  • Çağlar, A., Demirbaş, A. (2002) Hydrogen Rich Gas Mixture from Olive Husk via Pyrolysis, Energy Conversion and Management, 43, 109 - 117.
  • Calkins, M. (2009). Materials for sustainable sites, John Wiley & Sons Inc., Hoboken, New Jersey, 14-24.
  • Criado J. M., Pérez-Maqueda L. A., SánchezJiménez P. E. (2005) Dependence of the preexponentıal factor on temperature errors in the activation energies calculated by assuming that a is constant. Journal of Thermal Analysis and Calorimetry, 82, 671–675.
  • Demirbas A. (2004). Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science, 30 (2), 219-230.
  • Demiral İ. , Gulmezoglu Atılgan N., Sensoz S. 2009 Production Of Biofuel From Soft Shell Of Pistachıo (Pıstacıa Vera L.), Chemical Engineering Communications Chem. Eng. Comm., 196,104–115.
  • Dhaundıyal A., Sıngh S. B., Hanon M. M., Rawat R. (2018). Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus, Environmental and Climate Technologies, 22, 5–21.
  • Doyle, C.D. (1962). Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science, 6, 639–42.
  • El Bassam N., Dambroth M.(2006). A concept of Energy Plants’ Farm, Biomass for Energy, Industry and Environment: 6th E.C. Conference.
  • Flynn, J.H. Wall, L.A. (1966). General treatment of the thermogravimetry of polymers, J. Res. Nat. Bur. Stand, 70, 487- 523.
  • Isıtan, S., Ceylan, S., Topcu, Y., Hintz, C., Tefft, J., Chellappa, T., Guo, J., Goldfarb, J. L. (2016). Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via Pyrolysis, Energy Conversion and Management, 127 576–588.
  • Jagannadham V. (2010) How Do We Introduce the Arrhenius Pre-Exponential Factor (A) to Graduate Students?, Creative Education, 2, 128-129.
  • Jeguirim, M., Trouvé, G. (2009). Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis, Bioresource Technology, 100, 4026–4031.
  • Kızılca M., Copur M. (2016). Investigation of the Thermal Decomposition Kinetics of Chalcopyrite Ore Concentrate using Thermogravimetric Data, Chemical Engineering Communications, 203, 692-704.
  • Lima A. C. R., China B. L. F., Jawada Z. A., Hiia K. L. ( 2016 ). Kinetic analysis of rice husk pyrolysis using Kissinger-AkahiraSunose (KAS) method. Procedia Engineering, 148, 1247 – 1251.
  • Liu, H., Ahmad, M.S., Alhumade, H., Elkamel, A., Sammak, S., Shen, B. (2020). A hybrid kinetic and optimization approach for biomass pyrolysis: The hybrid scheme of the isoconversional methods, DAEM, and a parallelreaction mechanism, Energy Conversion and Management, 208, 112531.
  • Li X., Liu Y., Hao J., Wang W. (2018). Study of Almond Shell Characteristics, Materials, 11, 1782
  • Orfao,J.M., Martins, F.G. (2002). “Kinetic analysis of thermogravimetric data obtained under linear temperature programming, a method based on calculations of the temperature integral by interpolations”, Thermochimica Acta, 390(1-2), 195-211.
  • Ozawa, T. A. (1965). New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., 38, 1881-1886.
  • Özçimen D., Ersoy-Meriçboyu A. (2008). A study on the carbonization of grapeseed and chestnut Shell, Fuel Process Technol, 89, 1041-1046.
  • Özçimen D., Ersoy-Meriçboyu A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials, Renewable Energy, 35, 1319-1324.
  • Özsin, G. and Eren Pütün, A. (2018). Copyrolytic behaviors of biomass and polystyrene: Kinetics, thermodynamics and evolved gas analysis, Korean J. Chem. Eng., 35, 2, 428-437.
  • Pan N., Li D., Lü W., Dai F. (2019). Kinetic study on the pyrolysis behavior of Jimsar oil shale, Oil Shale, 36, 4, 462–482.
  • Polat, S., Apaydin-Varol, E. and Eren Pütün, A. (2016). Thermal decomposition behavior of tobacco stem Part II: Kinetic analysis, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 20, 3073–3080.
  • Ravindranath, N.H. Hall, D.O. (1995) Biomass energy, and environment—a developing country perspective from India, Oxford University Press, Oxford.
  • Setter, C., Silva, F.T.M., Assis, M.R. Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P (2020). Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions, Fuel, 261, 116420.
  • Sharma R., K., Wooten J. B., Baliga V. L., Lin1 X., Chan W. G., Hajaligol M. R. (2004). Characterization of Chars from Pyrolysis of Lignin, Fuel, 83, 1469–1482.
  • Tonbul, Y., Yurdakoç, K. (2001). Thermogravimetric Investigation of the Dehydration Kinetics of KSF, K10 and Turkish Bentonite, Turkish Journal of Chemistry, 25, 333-339.
  • Trache D., Abdelaziz A., Siouani B.(2017). A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions Journal of Therm Analysis and Calorimetry, 128,335–348.
  • Zhang L., Xu C. (2010). Champagne P., Overview of recent advances in thermochemical conversion of biomass Energy Conversion and Management 51, 969–982.
APA BAYRAKÇEKEN H, KIZILCA CORUH M (2020). Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. , 847 - 856. 10.18185/erzifbed.680647
Chicago BAYRAKÇEKEN Hatice,KIZILCA CORUH MELTEM Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. (2020): 847 - 856. 10.18185/erzifbed.680647
MLA BAYRAKÇEKEN Hatice,KIZILCA CORUH MELTEM Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. , 2020, ss.847 - 856. 10.18185/erzifbed.680647
AMA BAYRAKÇEKEN H,KIZILCA CORUH M Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. . 2020; 847 - 856. 10.18185/erzifbed.680647
Vancouver BAYRAKÇEKEN H,KIZILCA CORUH M Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. . 2020; 847 - 856. 10.18185/erzifbed.680647
IEEE BAYRAKÇEKEN H,KIZILCA CORUH M "Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed." , ss.847 - 856, 2020. 10.18185/erzifbed.680647
ISNAD BAYRAKÇEKEN, Hatice - KIZILCA CORUH, MELTEM. "Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed". (2020), 847-856. https://doi.org/10.18185/erzifbed.680647
APA BAYRAKÇEKEN H, KIZILCA CORUH M (2020). Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 847 - 856. 10.18185/erzifbed.680647
Chicago BAYRAKÇEKEN Hatice,KIZILCA CORUH MELTEM Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13, no.2 (2020): 847 - 856. 10.18185/erzifbed.680647
MLA BAYRAKÇEKEN Hatice,KIZILCA CORUH MELTEM Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.13, no.2, 2020, ss.847 - 856. 10.18185/erzifbed.680647
AMA BAYRAKÇEKEN H,KIZILCA CORUH M Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 13(2): 847 - 856. 10.18185/erzifbed.680647
Vancouver BAYRAKÇEKEN H,KIZILCA CORUH M Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 13(2): 847 - 856. 10.18185/erzifbed.680647
IEEE BAYRAKÇEKEN H,KIZILCA CORUH M "Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13, ss.847 - 856, 2020. 10.18185/erzifbed.680647
ISNAD BAYRAKÇEKEN, Hatice - KIZILCA CORUH, MELTEM. "Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13/2 (2020), 847-856. https://doi.org/10.18185/erzifbed.680647