Yıl: 2021 Cilt: 12 Sayı: 2 Sayfa Aralığı: 355 - 372 Metin Dili: Türkçe DOI: 10.24012/dumf.779147 İndeks Tarihi: 09-01-2022

Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı

Öz:
Günümüzde binalarda, bina kabuğunun ısıl kütlesini artırarak enerji tasarrufu sağlayan ve enerjiyi ısıl kütlede gizli ısı olarak depolayan faz değiştiren malzemelerin (FDM) kullanımı gittikçe yaygınlaşmaktadır. Ancak bu malzemelerin özellikle bina kabuğunda kullanımı ile ilgili literatürde mevcut olan teorik, uygulama ve deneysel çalışma sayısı yeterli değildir ve bu konu ile ilgili bilgi eksikliği yapılan çalışmaların sonuçlarını etkilemektedir. Bu çalışma ile bina kabuğunda kullanılmaya yeni başlanmış olan faz değiştiren malzemelerin son yıllarda yapılmış olan tez, makale, kitap ve araştırma projeleri üzerinden farklı kategorilerde incelenmesi ve yapılan incelemeler sonucunda FDM ile ilgili literatür özetinin okuyucuya sunularak bu konudaki gündeme ışık tutulması hedeflenmektedir. Bu hedefler doğrultusunda son yıllarda yapılmış olan yaklaşık 50 bilimsel çalışma; FDM’nin kullanıldığı bina kabuklarının farklı iklim bölgelerinde kullanımı, FDM' nin kullanıldığı yapı elemanı, kullanılan FDM çeşitleri, FDM ile birleştirme teknikleri, çalışma tipi ve kullanılan simülasyon programı başlıkları altında değerlendirilerek tablolar ve görsellerle ifade edilmiştir. Farklı tipteki FDM' lerin ısıl performans özellikleri, avantaj- dezavantajları ve uygulama yöntemleri karşılaştırılarak gerekli önerilerde bulunulmuş ve bu konuda çalışacak olan araştırmacıların izlemesi gereken süreç bir diyagram üzerinde gösterilmiştir. Çalışma sonucunda, FDM’ler üzerine yapılmış birçok çalışma olmasına rağmen bu konudaki mühendislik bilgisinin yetersiz olduğu, deneysel çalışma sayısısın artırılması gerekliliği saptanmış ve en önemlisi FDM’lerin her iklim koşulunda bina kabuğunda kullanıma uygun, düşük maliyetli ve sürdürülebilir bir malzeme olarak geliştirilmesinin büyük önem arz ettiği belirtilmiştir.
Anahtar Kelime:

Usage in Building Envelope of Phase Change Materials

Öz:
Nowadays, the use of phase-changing materials (PCM) which store energy as latent heat in the thermal mass and provide energy saving by increased thermal mass of building envelope is becoming more and more common in buildings. However, in literature, the number of theoretical, practical and experimental study on using in building envelope of these materials is not enough and lack of information in relation to this topic effects results of similar studies. With this study, it is aimed to examine the phase-changing materials that have just started to be used in the building envelope in different categories through thesis, articles, books, and research projects made in recent years and to shed light on the agenda by means of present a summary of the literature on PCM to the reader in result of these examinations. In line with these targets; approximately 50 scientific studies published in recent years; Usage in different climatic regions of building envelopes with PCM, the building element where the PCM is used, the PCM types used, the joining techniques with PCM, the study type and the simulation program used are evaluated and expressed with tables and visuals. By comparing the thermal performance characteristics, advantages-disadvantages and application methods of different types of PCMs, the necessary suggestions were made and the process that should be followed by the researchers who will work on this subject is shown on a diagram. As a result of the study, although there are many studies on PCMs, it was determined that the engineering knowledge on this subject is insufficient, the number of experimental studies should be increased, and most importantly, it is of great importance to develop PCMs as a low-cost and sustainable material suitable for use in building envelopes in all climatic conditions. It has been stated.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] BP Energy Outlook 2019 Edition, https:// www.bp.com/content/dam/bp/business-sites /en /global/ corporate/ pdfs/ energy-economics/ energy-outlook/ bp-energy-outlook-2019. pdf, 13.06.2020.
  • [2] Directive 2010/31/EU, Energy performance of buildings, European Parliament and of the Council.
  • [3] Ulusal Enerji Verimliliği Eylem Planı 2017-2023, T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Mart 2018, Ankara.
  • [4] Kosny, J., PCM- Enhanced Building Components, Springer, Switzerland, 2015.
  • [5] http:/www.dspace.library.cornell.edu/bitstream/1813/125/2/Igloo.pdf.
  • [6] Gonzales-Espada, W.J., Bryan, L.A., Kang N-H., (2001). The intriguing physics inside an Igloo, Physics Education, 36,4, 290-298.
  • [7] Telkes, M., (1978). Trombe wall with phase change storage material. In: Proceedings of the 2nd national passive solar conference, Philadelphia.
  • [8] Leang,P.T., Zalewski, L., Enghok, S.L., (2017). Numerical Study Of A Composite Trombe Solar Wall İntegrating Microencapsulated (PCM), Energy Procedia, 122, 1009-1014.
  • [9] Graciaa, A.D., Cabeza, L.F., (2015). Phase change materials and thermal energy storage for buildings, Energy and Buildings, 103, 15, 414-419.
  • [10] Kuznik, F., Virgone, J., Noel, J., (2008). Optimization of a phase change material wallboard for building use,Applied Thermal Engineering, 28,11–12, 1291–1298.
  • [11] Kuznik,F., Virgone, J., Roux, J.-J. (2008). Energetic efficiency of room wall containing fdm wallboard: a full-scale experimental investigation, Energy and Buildings, 40 ,2, 148–156.
  • [12] Tokuç, A.,(2013). Faz değişim malzemelerinin ısıl enerji depolama amacıyla yapı elemanlarında kullanılması, Dokuz Eylül Üniversitesi / Fen Bilimleri Enstitüsü / Mimarlık Bölümü / Yapı Bilgisi Anabilim Dalı, Doktora Tezi.
  • [13] Kancane,L., Vanaga,R., Blumberga, A., (2016). Modeling of building envelope’s thermal properties by applying phase change materials, Energy Procedia, 95 ,175 – 180.
  • [14] Evola, G., Marletta, L., Sicurella, F., (2013). A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings, Building Environment, 59, 517–527.
  • [15] Çırakman, A.K.,(2010). Faz değiştiren madde içeren bina güney duvarının deneysel olarak incelenmesi, Atatürk Üniversitesi / Fen Bilimleri Enstitüsü / Makine Mühendisliği, Doktora Tezi.
  • [16] Konuklu, Y., (2008). Mikrokapsüllenmiş Faz değiştiren maddelerde termal enerji depolama ile binalarda enerji tasarrufu, Çukurova Üniversitesi / Fen Bilimleri Enstitüsü / Kimya Anabilim Dalı, Doktora Tezi.
  • [17] Zalewski,L., Joulin, A., Lassue, S., Dutil,Y., Rousse, D.,(2012). Experimental study of small-scale solar wall integrating phase change material.
  • [18] Fiorito, F., (2012). Trombe walls for lightweight buildings in temperate and hotclimates. exploring the use of phase change materials for performances improvement, Energy Procedia, 30, 1110 – 1119.
  • [19] Diaconu, B.M., Cruceru, M., (2010). Novel concept of composite phase change material wall system for year-round thermal energy savings, Energy and Buildings, 42, 10, 1759-1772.
  • [20] Guarino, F., Dermardiros, V., Chen,Y., Rao, J., Athienitis,A., Cellura, M., Mistretta, M., (2015). PCM thermal energy storage in buildings: experimental study and applications, Energy Procedia, 70, 219 – 228.
  • [21] Panayiotou, G.P.,Kalogirou, S.A., Tassou, S.A., (2016), Evaluation of the application of phase change materials (PCM) on the envelope of a typical dwelling in the mediterranean region, Renewable Energy, 97,24-32.
  • [22] Laaouatni, A., Martaj, N., Bennacer, R., Mohamed Mohammed, E.O., Ganaoui, E., (2017). Phase change materials for improving the building thermal inertia, Energy Procedia, 139, 744–749.
  • [23] Wu, Z., Chen, M.Q.Z., (2017). Phase change humidity control material and its application in buildings, Procedia Engineering, 205, 1011–1018.
  • [24] Ramakrishnan, S., Wang, X., Sanjayan, J., Wilson, J., (2016). Experimental and numerical study on energy performance of buildings ıntegrated with phase change materials, Energy Procedia, 105, 2214 – 2219.
  • [25] Han, Y., Taylor, J.E., (2015). Simulating the ımpact of phase change material embedded building envelopes on the ınter-building effect in non-tropical cities, Procedia Engineering, 118, 760 – 765.
  • [26] Nazi,W.I.W.M., Wang,Y., Chen,H., Zhang,X., Roskilly,A.P., (2017). Passive cooling using phase change material and ınsulation for high-rise office building in tropical climate, Energy Procedia, 142, 2295–2302. [27] Li, Y., Darkw, J., Su, W., (2019). Investigation on thermal performance of an integrated phase change material blind system for double skin façade buildings, Energy Procedia, 158, 5116–5123.
  • [28] Auzeby,M., Wei, S., Underwood, C., Chen, C., Ling,H., Pan, S., Ng, B., Tindall, J., Buswell, R., (2017). Using phase change materials to reduce overheating issues in uk residential buildings, Energy Procedia, 105, 4072 – 4077.
  • [29] Mols,T., Dzene,K.P., Vanaga,R., Freimanis, R., Blumberga, A., (2018). Experimental study of small-scale passive solar wall module with phase change material and fresnel lens, Energy Procedia, 147,467–473.
  • [30] Li,Y., Liang, W., Zhou, J., Long,E., (2017). Experimental Study On Thermal performance ımprovement of building envelopes ıntegrated with phase change materials in an air-conditioned room, Procedia Engineering, 205,190–197.
  • [31] Guarino, F.,, Cellura, S.L.M., Mistretta, M., La Rocca, V., (2015). Phase change materials applications to optimize cooling performance of buildings in the mediterranean area: a parametric analysis, Energy Procedia, 78, 1708 – 1713.
  • [32] Li, Y., Wang,Y., Meng, X., Wang, M., Long, E., (2015). Research on indoor thermal environment improvement of lightweight building integrated with phase change material under different climate conditions, Procedia Engineering, 121, 1628 – 1634.
  • [33] Bejan, A.S., Catalina, T., (2016). The implementation of phase changing materials in energy efficient buildings. case study: efden project, Energy Procedia, 85,52 – 59.
  • [34] Ma, Q., Fukuda,H., Wei, X., Hariyadi,A., (2018). Optimizing energy performance of a ventilated composite trombe wall in an office building, Renewable Energy, 134, 1285-1294.
  • [35] Meng,E., Yu,H., Zhou, B., (2017). Study of the thermal behavior of the composite phase change material (fdm) room in summer and winter, Applied Thermal Engineering, 126, 212–225.
  • [36] Soudian,S., Berardi, U., (2017). Experimental investigation of latent thermal energy storage in highrise residential buildings in toronto, Energy Procedia, 132, 249–254.
  • [37] Xie,J., Wang,W., Liu,J., Pan, S., (2018). Thermal performance analysis of fdm wallboards for building application based on numerical simulation, Solar Energy, 162, 533–540.
  • [38] Li, S., Zhu, N., Hu,P., Lei, F., Deng,R., (2019). Numerical Study On Thermal Performance Of PCM Trombe Wall, Energy Procedia, 158, 2441–2447.
  • [39] Sajjadian, S.M., Lewis, J., Sharples, S., (2015). The potential of phase change materials to reduce domestic cooling energy loads for current and future uk climates,Energy and Buildings, 93, 83–89.
  • [40] Principi, P., Di Perna, C., Borrelli, G., Carbonari, A., (2005).Experimental energetic evaluation of changeable thermal inertia fdm containing walls, 482 th International Conference “Passive and Low Energy Cooling for the Built Environment, Santorini, Greece.
  • [41] Schossig, P., Henning, H.-M., Gschwander, S., Haussmann, T., (2005). Microencapsulated phase-change materials integrated into construction materials, Solar Energy Materials and Solar Cells, 89 (2–3), 297–306.
  • [42] Zhou, D. , Zhao, C.Y., Tian, Y., (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy, 92, 593–605.
  • [43] Soares, N., Costa, J.J., Gaspar, A.R., Santos, P.,(2013). Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency, Energy and Buildings, 59, 82-103.
  • [44] Karaoulis, A., (2017). Investigation of energy performance in conventional and lightweight building components with the use of phase change materials (PCMs): energy savings in summer season, Procedia Environmental Sciences, 38, 796 – 803.
  • [45] Köse, E., Manioğlu G., (2018). Evaluation of the performance of phase change materials in relation to balanced distribution of heating energy cost in residential buildings, 13th International HVAC+R Technology Symposium.
  • [46] Mays, A.I., Ammar, R., Hawa, M., Farouk,M.A.A., (2017). Using phase change material in under floor heating, Energy Procedia, 119, 806–811.
  • [47] Alama, M., Sanjayan,J., Patrick, X.W., Ramakrishnan, Z.S., Wilson,J., (2016). A Comparative study on the effectiveness of passive and free cooling application methods of phase change materials for energy efficient retrofitting in residential buildings, Procedia Engineering, 180, 993 – 1002.
  • [48] Knowles, T., (1983). Proportioning composites for efficient thermal storage walls, Solar Energy,31,3, 319-326.
  • [49] Farid, M.M., Khudhai, A.M., Ali, S., Razack, K., (2004). A review on phase change energy storage: materials and applications, Energy Conversion and Management, 45, 1597–1615.
  • [50] Cui,Y., Xie, J., Liu,J., Pan,S., (2015). Review of phase change materials ıntegrated in building walls for energy saving, Procedia Engineering, 121,763 – 770.
  • [51] https://www.altensis.com/hizmetler/designbuilder-software/
  • [52] Cellat, K., (2017). Binalarda enerji tasarrufu için güneş enerjisini faz değiştiren maddede pasif depolayan yeni beton karışımların geliştirilmesi ve uygulanması, Çukurova Üniversitesi / Fen Bilimleri Enstitüsü / Kimya Anabilim Dalı Doktora Tezi.
  • [53] Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S., (2004). A review on phase change energy storage: materials and applications, Energy Conversion and Management,45, 1597–1615.
  • [54] Velraj, R., Pasupathy, A., Phase change material based thermal storage for energy conservation in buildingarchitecture,https://www.researchgate.net/publication/228823294, 2006.
  • [55] Madessa, H.B., (2014). A review of the performance of buildings integrated with phase change material: opportunities for application in cold climate, Energy Procedia, 62, 318 – 328.
  • [56] Navarro,L., Garcia, A.D., Solé, C., , Castell,A., Cabeza,L.F., (2012).Thermal loads inside buildings with phase change materials: experimental results, Energy Procedia, 30, 342 – 349.
  • [57] Hanchi, N., Hamza,H., Lahjomri, J., Oubarra,A., (2017). Thermal behavior in dynamic regime of a multilayer roof provided with two phase change materials in the case of a local conditioned, Energy Procedia, 139, 92–97.
  • [58] Cao,V.D., Pilehvar,S., Salas-Bringas,C., Szczotok, A.M., Rodriguez, J.F., Carmona, M., Al-Manasir, N., Kjøniksen, A.L., (2017). ). Microencapsulated Phase Change Materials For Enhancing The thermal performance of portland cement concrete and geopolymer concrete for passive building applications, Energy Conversion and Management, 133,56–66.
  • [59] Pisello,A.L., Castaldo, V.L., Cotana,F., (2015). Dynamic thermal-energy performance analysis of a prototype building with integrated phase change materials, Energy Procedia, 81, 82 – 88.
APA Saylam Canım D, KALFA S (2021). Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. , 355 - 372. 10.24012/dumf.779147
Chicago Saylam Canım Deniz,KALFA Sibel MAÇKA Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. (2021): 355 - 372. 10.24012/dumf.779147
MLA Saylam Canım Deniz,KALFA Sibel MAÇKA Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. , 2021, ss.355 - 372. 10.24012/dumf.779147
AMA Saylam Canım D,KALFA S Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. . 2021; 355 - 372. 10.24012/dumf.779147
Vancouver Saylam Canım D,KALFA S Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. . 2021; 355 - 372. 10.24012/dumf.779147
IEEE Saylam Canım D,KALFA S "Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı." , ss.355 - 372, 2021. 10.24012/dumf.779147
ISNAD Saylam Canım, Deniz - KALFA, Sibel MAÇKA. "Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı". (2021), 355-372. https://doi.org/10.24012/dumf.779147
APA Saylam Canım D, KALFA S (2021). Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(2), 355 - 372. 10.24012/dumf.779147
Chicago Saylam Canım Deniz,KALFA Sibel MAÇKA Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 12, no.2 (2021): 355 - 372. 10.24012/dumf.779147
MLA Saylam Canım Deniz,KALFA Sibel MAÇKA Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.12, no.2, 2021, ss.355 - 372. 10.24012/dumf.779147
AMA Saylam Canım D,KALFA S Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2021; 12(2): 355 - 372. 10.24012/dumf.779147
Vancouver Saylam Canım D,KALFA S Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2021; 12(2): 355 - 372. 10.24012/dumf.779147
IEEE Saylam Canım D,KALFA S "Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı." Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12, ss.355 - 372, 2021. 10.24012/dumf.779147
ISNAD Saylam Canım, Deniz - KALFA, Sibel MAÇKA. "Faz Değiştiren Malzemelerin Bina Kabuğunda Kullanımı". Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 12/2 (2021), 355-372. https://doi.org/10.24012/dumf.779147