Yıl: 2021 Cilt: 14 Sayı: 2 Sayfa Aralığı: 751 - 760 Metin Dili: İngilizce DOI: 10.18185/erzifbed.906280 İndeks Tarihi: 02-03-2022

Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine

Öz:
The density functional theory (DFT) method combined with B3LYP and B3PW91 hybrid functional were utilized for geometrical optimization, vibrational frequencies and electronic spectral study. The B3LYP and B3PW91 levels of the time dependent-DFT with 6–311+G(d, p) basis set have been used to determine the highest occupied molecular orbital (HOMO) – the lowest unoccupied molecular orbital (LUMO) energies, absorption wavelengths, and electronic properties (total energy and energy gap) of 4-(1-aminoethyl)pyridine. Global reactivity descriptors like ionization potential, chemical hardness and electron affinity, etc. have been estimated using the B3LYP/6–311+G (d, p) and B3PW91/6–311+G (d, p) methods. The effect of the solvent has been simulated using the integral equation formalism-polarized continuum model (IEF-PCM).
Anahtar Kelime:

4-(1-Aminoetil)piridin’in Kuantum Kimyasal Hesaplamaları Üzerine Çalışmalar

Öz:
Geometrik optimizasyonu, titreşim frekansları ve elektronik spektral çalışma için yoğunluk fonksiyonel teorisinin (DFT) B3LYP ve B3PW91 hibrit fonksiyonelleri kullanıldı. 4-(1-aminoetil) piridin’in en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbitallerin (LUMO) enerjileri, absorbsiyon dalga boylarının ve elektronik özelliklerinin (toplam enerji, enerji aralığı vb.) hesaplanmasında zamana bağlı-DFT ile B3LYP ve B3PW91 ve 6–311+G(d, p) baz seti kullanıldı. İyonizasyon potansiyeli, kimyasal sertlik ve elektron afinitesi gibi global reaktiflik tanımlayıcıları B3LYP/6–311+G (d, p) ve B3PW91/6–311+G (d, p) yöntemleri kullanılarak tahmin edilmiştir. Çözücü etkisi zamana bağlı yoğunluk fonksiyonel teorisine sürekli polarizasyon modeli (IEF-PCM) uygulanarak hesaplandı.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bhatt, A. H., Parekh, M. H., Parikh, K. A., & Parikh, A .R. (2001). Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents. Indian Journal of. Chemistry., 40(6), 57-61.
  • Dennington, R. (2009). GaussView Version 5, Roy, Todd Keith and John Millam, Semichem Inc., Shawnee Mission K.S.
  • Dosh,i R., Kagathara, P.,&, Parekh H. (1999). Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents. Ind. J. Chem., 38, 348–352.
  • Dubey, P. K., Chowdary, K. S., Ramesh, B., & Prasada, Reddy P. V. V. (2010). Na2S2O4: A Versatile Reagent for the One-Pot Synthesis of 2-Aryl-1H-imidazo[4,5-c]pyridines from 4- Amino-3-nitropyridine and Aldehydes via Reductive Cyclization. Synthetic Communications, 40, 697-708. https://doi.org/10.1080/00397910903011345
  • Dursun, K. D., Kürkçüoğlu ,G. S., Şenyel, M., & Şahin, O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013
  • Frisch, M.J. et al., 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT. Gorelsky, S. I., 2010. SWizard Program Revision 4.5 University of Ottawa, Ottawa, Canada, http://www.sg.chem.net/ (2010).
  • Hishmat, O. H., Galil, F. M. A., & Farrag, D. S. (1990). Synthesis and antimicrobial activity of new benzofuranylpyridine derivatives. Pharmazie, 45, 793–795.
  • Huang, R., Wallqvist, A., & Covell, D. G. (2005). Anticancer metal compounds in NCI's tumorscreening database: putative mode of action. Biochem. Pharmacol., 69(7), 1009- 1039.https://doi.org/10.1016/j.bcp.2005.01.001
  • Karaağaç, D., Kürkçüoğlu, G. S., Şenyel, M., & Hökelek, T. (2019). Syntheses, crystal structures, spectroscopic properties and thermal decompositions of one dimensional coordination polymers with 4-(2-aminoethyl)pyridine and cyanide ligands: [M(μ4aepy)2(H2O)2][M′(CN)4] (M = Cu or Zn, M' = Ni or Pd). Journal of Molecular Structure,1176, 641-649. https://doi.org/10.1016/j.molstruc.2018.08.110
  • Karaağaç, D., Kürkçüoğlu, G. S., Şenyel, M., & Hökelek, T. (2017). Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4- (2-aminoethyl)pyridine. Journal of Molecular Structure,1130, 80-88, https://doi.org/10.1016/j.molstruc.2016.09.089
  • Karaağaç, D., Kürkçüoğlu, G. S., Şenyel, M., & Şahin, O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013
  • Keogh, M., Sedehizadeh, S., & Maddison, P. C. (2011). Treatment for Lambert‐Eaton myasthenic syndrom. Database of Systematic Reviews, 2, 1-21. https://doi.org/10.1002/14651858.CD003279.pub3
  • Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B 37, 785- 789.https://doi.org/10.1103/PhysRevB.37.785
  • Middleton, R. W. & Wimberley, D. G. (1980). Synthesis of 2‐amino‐3‐benzoylphenylacetic acid. J. Heterocycl. Chem. 17(8), 1663-1664.
  • Patrick G. L. and Kinsmar O. S. (1996). Synthesis and antifungal activity of novel aza-d-- homosteroids, hydroisoquinolines, pyridines and dihydropyridines. J. Med. Chem., 31, 615– 624. https://doi.org/10.1016/0223-5234(96)89557-2
  • Perdew, J. P., Burke, K., & Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533-16539. https://doi.org/10.1103/PhysRevB.54.16533
  • Pizarro, A. M. & Sadler, P. J. (2009). Unusual DNA binding modes for metal anticancer complexes. Biochimie, 91(10), 1198-211. https://doi.org/10.1016/j.biochi.2009.03.017.
  • Sankpal, U. T., Pius, H., Khan, M., Shukoor, M. I., Maliakal, P., Lee, C .M., Abdelrahim, M., Connelly, S. F., & Basha, R. (2012). Environmental factors in causing human cancers: emphasis on tumorigenesis. Tumor Biol., 33 (5), 1265–1274. https://doi.org/10.1007/s13277-012-0413-4
  • Sedehizadeh, S., Keogh, M., & Maddison, P. (2012). The Use of Aminopyridines in Neurological Disorders. Clinical Neuropharmacol, 35, 191-200. doi: 10.1097/WNF.0b013e31825a68c5
  • Siddiqui, N. & Javed, S. (2021). Quantum computational, spectroscopic investigations on ampyra (4-aminopyridine) by dft/td-dft with different solvents and molecular docking studies. Journal of Molecular Structure,1224,129022.https://doi.org/10.1016/j.molstruc.2020.129021
  • Smith, R. C. F., Emmen, H. H., Bertelsmann, F. W., Kulig, B. M., van Loenen, A. C., & Polman, C. H. (1994). The effects of 4-aminopyridine on cognitive function in patients with multiple sclerosis: A pilot study. Neurology, 44(9), 1701- 1705. https://doi.org/10.1212/WNL.44.9.1701
  • Strupp, M., Teufel, J., Zwergal, A., Schniepp, R., Khodakhah, K., & Feil, K. (2017). Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract.,7(1), 65-76. https://doi.org/10.1212/CPJ.0000000000000321
  • Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 5, 219–234. https://doi.org/10.1038/nrd1984
  • Topaçlı, A. & Bayarı, S. (1999).Urey-Bradley force field of 4-ethylpyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,55(7–8),1389-1394. https://doi.org/10.1016/S1386-1425(98)00302-3
  • Vural, H., Kara, M., & İdil, Ö. (2016). Experimental and computational study of the structure and spectroscopic properties of 1′,3′-Dihydrospiro[cyclohexane-1,2′-[2H]imidazo[4,5- b]pyridine]. Journal of Molecular Structure,1125,662-670, https://doi.org/10.1016/j.molstruc.2016.07.065
  • Vural, H., Ozdogan, T., & Orbay, M. (2019). DFT investigation of the electronic structure and nonlinear optic properties (NLO) of 3-amino-4-(Boc-amino)pyridine. Indian J Phys., 93, 1113– 1122. https://doi.org/10.1007/s12648-019-01391-0
APA VURAL H (2021). Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. , 751 - 760. 10.18185/erzifbed.906280
Chicago VURAL HATICE Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. (2021): 751 - 760. 10.18185/erzifbed.906280
MLA VURAL HATICE Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. , 2021, ss.751 - 760. 10.18185/erzifbed.906280
AMA VURAL H Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. . 2021; 751 - 760. 10.18185/erzifbed.906280
Vancouver VURAL H Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. . 2021; 751 - 760. 10.18185/erzifbed.906280
IEEE VURAL H "Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine." , ss.751 - 760, 2021. 10.18185/erzifbed.906280
ISNAD VURAL, HATICE. "Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine". (2021), 751-760. https://doi.org/10.18185/erzifbed.906280
APA VURAL H (2021). Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 751 - 760. 10.18185/erzifbed.906280
Chicago VURAL HATICE Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14, no.2 (2021): 751 - 760. 10.18185/erzifbed.906280
MLA VURAL HATICE Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.14, no.2, 2021, ss.751 - 760. 10.18185/erzifbed.906280
AMA VURAL H Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 14(2): 751 - 760. 10.18185/erzifbed.906280
Vancouver VURAL H Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 14(2): 751 - 760. 10.18185/erzifbed.906280
IEEE VURAL H "Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, ss.751 - 760, 2021. 10.18185/erzifbed.906280
ISNAD VURAL, HATICE. "Quantum Chemical Computational Studies on 4-(1-Aminoethyl)pyridine". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14/2 (2021), 751-760. https://doi.org/10.18185/erzifbed.906280