Yıl: 2021 Cilt: 14 Sayı: 2 Sayfa Aralığı: 825 - 836 Metin Dili: İngilizce DOI: 10.18185/erzifbed.923845 İndeks Tarihi: 02-03-2022

Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors

Öz:
This paper mainly focused on one of the recent attractive electronic devices which is the ambipolar field-effect transistor. Ambipolarity has become important for many applications in recent years. Many factors that cause ambipolarity have been reported in the literature. However, the causes of ambipolarity have not been fully investigated so far. In this study, the degree of ambipolarity was determined as a function of the channel thickness for the WS2 FET device. For the WS2 FET device, the ambipolarity starts from a few layers of channel thickness, and then as the thickness increases, the ambipolarity begins to decrease again. It has been observed that as the thickness increases, the degree of ambipolarity approaches zero. The fact that the degree of ambipolarity approaches zero indicates that the WS2 channel exhibits natural n-type behavior and the ambipolarity effect disappears.
Anahtar Kelime:

TMDC Tabanlı Alan Etkili Transistörlerde Ambipolaritenin Kanal Kalınlığına Bağımlılığının Araştırılması

Öz:
Bu çalışmada ağırlıklı olarak güncel ambipolar alan etkili transistor üzerinde duruldu. Ambipolarite, son yıllarda birçok uygulama için önemli hale geldi. Literatürde ambipolariteye neden olan birçok faktör bildirilmiştir. Bununla birlikte, ambipolaritenin nedenleri literatürde tam olarak araştırılmamıştır. Bu çalışmada, ambipolarite derecesi, WS2 FET cihazı için kanal kalınlığının bir fonksiyonu olarak belirlenmiştir. Kalınlık arttıkça ambipolarite derecesinin sıfıra yaklaştığı görülmüştür. Ambipolarite derecesinin sıfıra yaklaşması, WS2 kanalının doğal n-tipi davranış sergilediğini ve ambipolarite etkisinin ortadan kalktığını gösterir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Acar, M., Mobtakeri, S., Efeoğlu, H., Ertuğrul, M., & Gür, E. (2020). Single-step, large-area, variable thickness sputtered WS2 film-based field effect transistors. Ceramics International, 46(17), 26854-26860.
  • Acar, M. 2020 " Design and Fabrication of Nanodevices Using Two Dimensional Materials", Dokrora, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 102.
  • Baugher, B. W., Churchill, H. O., Yang, Y., & Jarillo-Herrero, P. (2014). Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature nanotechnology, 9(4), 262-267.
  • Bisri, S. Z., Piliego, C., Gao, J., & Loi, M. A. (2014). Outlook and emerging semiconducting materials for ambipolar transistors. Advanced materials, 26(8), 1176-1199.
  • Chen J., Cranton W., Fihn M. (2012). “ Handbook of Visual Display Technology/ Organic Ambipolar Transistors and Circuits”. DOI 10.1007/978-3-540-79567-4
  • Das, S., Pandey, D., Thomas, J., & Roy, T. (2019). 2D Materials: The Role of Graphene and Other 2D Materials in Solar Photovoltaics (Adv. Mater. 1/2019). Advanced materials, 31(1), 1970006.
  • El Gemayel, M., Haar, S., Liscio, F., Schlierf, A., Melinte, G., Milita, S., . . . Samorì, P. (2014). Leveraging the Ambipolar Transport in Polymeric Field‐Effect Transistors via Blending with Liquid‐Phase Exfoliated Graphene. Advanced materials, 26(28), 4814-4819.
  • Gao, D., Zhang, X., Kong, X., Chen, Y., & Jiang, J. (2015). (TFPP) Eu [Pc (OPh) 8] Eu [Pc (OPh) 8]/CuPc two-component bilayer heterojunction-based organic transistors with high ambipolar performance. Acs Applied Materials & Interfaces, 7(4), 2486-2493.
  • Gomulya, W., Rios, J. M. S., Derenskyi, V., Bisri, S. Z., Jung, S., Fritsch, M., . . . Loi, M. A. (2015). Effect of temperature on the selection of semiconducting single walled carbon nanotubes using Poly (3-dodecylthiophene-2, 5-diyl). Carbon, 84, 66-73.
  • J. Boeckl and Chennupati Jagadish (Eds.), 2D Materials-Academic Press (2016) p.223
  • Jo, S., Ubrig, N., Berger, H., Kuzmenko, A. B., & Morpurgo, A. F. (2014). Mono-and bilayer WS2 light-emitting transistors. Nano letters, 14(4), 2019-2025.
  • Kang, Y., Jeon, D., & Kim, T. (2020). Direct Observation of the Thickness-Dependent Dielectric Response of MoS2 and WSe2. The Journal of Physical Chemistry C, 124(33), 18316- 18320.
  • Kim, J. H., Kim, T. H., Lee, H., Park, Y. R., Choi, W., & Lee, C. J. (2016). Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. Aip Advances, 6(6), 065106.
  • Krymowski K. E., (2015). " Electronic Mobilities of Two-Dimensional Transition Metal Dichalcogenides" Ph. D. Materials Science and Engineering. The Ohio State University.
  • Lee, G., Oh, S., Kim, J., & Kim, J. (2020). Ambipolar Charge Transport in Two-Dimensional WS2 Metal–Insulator–Semiconductor and Metal–Insulator–Semiconductor Field-Effect Transistors. Acs Applied Materials & Interfaces, 12(20), 23127-23133.
  • Li, F., Ma, C., Wang, H., Hu, W., Yu, W., Sheikh, A. D., & Wu, T. (2015). Ambipolar solutionprocessed hybrid perovskite phototransistors. Nature communications, 6(1), 1-8.
  • Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., . . . Hu, W. (2015). High mobility emissive organic semiconductor. Nature communications, 6(1), 1-8.
  • Liu, T., Xiang, D., Zheng, Y., Wang, Y., Wang, X., Wang, L., . . . Chen, W. (2018). Nonvolatile and Programmable Photodoping in MoTe2 for Photoresist‐Free Complementary Electronic Devices. Advanced materials, 30(52), 1804470.
  • Ni, Z., Wang, H., Zhao, Q., Zhang, J., Wei, Z., Dong, H., & Hu, W. (2019). Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two‐Step C H Activation Strategy. Advanced materials, 31(10), 1806010.
  • Ovchinnikov, D., Allain, A., Huang, Y.-S., Dumcenco, D., & Kis, A. (2014). Electrical transport properties of single-layer WS2. Acs Nano, 8(8), 8174-8181.
  • Pudasaini, P. R., Oyedele, A., Zhang, C., Stanford, M. G., Cross, N., Wong, A. T., . . . Mandrus, D. G. (2018). High-performance multilayer WSe 2 field-effect transistors with carrier type control. Nano Research, 11(2), 722-730.
  • Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS 2 transistors. Nature nanotechnology, 6(3), 147-150.
  • Rani, A., DiCamillo, K., Khan, M. A. H., Paranjape, M., & Zaghloul, M. E. (2019). Tuning the polarity of MoTe2 FETs by varying the channel thickness for gas-sensing applications. Sensors, 19(11), 2551.
  • Rawat, A., Jena, N., & De Sarkar, A. (2018). A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers. Journal of Materials Chemistry A, 6(18), 8693-8704.
  • Ren, Y., Yang, J. Q., Zhou, L., Mao, J. Y., Zhang, S. R., Zhou, Y., & Han, S. T. (2018). Gate‐ tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Advanced Functional Materials, 28(50), 1805599.
  • Ren, Y., Yang, X., Zhou, L., Mao, J. Y., Han, S. T., & Zhou, Y. (2019). Recent advances in ambipolar transistors for functional applications. Advanced Functional Materials, 29(40), 1902105.
  • Risteska, A., Chan, K.-Y., Anthopoulos, T. D., Gordijn, A., Stiebig, H., Nakamura, M., & Knipp, D. (2012). Designing organic and inorganic ambipolar thin-film transistors and inverters: Theory and experiment. Organic Electronics, 13(12), 2816-2824.
  • Roy, S., & Bermel, P. (2018). Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. Solar Energy Materials and Solar Cells, 174, 370-379.
  • Senanayak, S. P., Ashar, A., Kanimozhi, C., Patil, S., & Narayan, K. (2015). Room-temperature bandlike transport and Hall effect in a high-mobility ambipolar polymer. Physical Review B, 91(11), 115302.
  • Van Berkel, C., & Powell, M. (1987). Resolution of amorphous silicon thin‐film transistor instability mechanisms using ambipolar transistors. Applied Physics Letters, 51(14), 1094- 1096.
  • Wang, Z., Li, Q., Chen, Y., Cui, B., Li, Y., Besenbacher, F., & Dong, M. (2018). The ambipolar transport behavior of WSe 2 transistors and its analogue circuits. NPG Asia Materials, 10(8), 703-712.
  • Wannebroucq, A., Ouedraogo, S., Meunier-Prest, R., Suisse, J.-M., Bayo, M., & Bouvet, M. (2018). On the interest of ambipolar materials for gas sensing. Sensors and Actuators B: Chemical, 258, 657-664.
  • Zhang, Y., Yao, Y., Sendeku, M. G., Yin, L., Zhan, X., Wang, F., He, J. (2019). Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Advanced materials, 31(41), 1901694.
  • Zhang, Y., Zhang, Y., Ji, Q., Ju, J., Yuan, H., Shi, J., Chen, Y. (2013). Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. Acs Nano, 7(10), 8963-8971.
APA ACAR M, Ertugrul M (2021). Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. , 825 - 836. 10.18185/erzifbed.923845
Chicago ACAR MERVE,Ertugrul Mehmet Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. (2021): 825 - 836. 10.18185/erzifbed.923845
MLA ACAR MERVE,Ertugrul Mehmet Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. , 2021, ss.825 - 836. 10.18185/erzifbed.923845
AMA ACAR M,Ertugrul M Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. . 2021; 825 - 836. 10.18185/erzifbed.923845
Vancouver ACAR M,Ertugrul M Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. . 2021; 825 - 836. 10.18185/erzifbed.923845
IEEE ACAR M,Ertugrul M "Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors." , ss.825 - 836, 2021. 10.18185/erzifbed.923845
ISNAD ACAR, MERVE - Ertugrul, Mehmet. "Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors". (2021), 825-836. https://doi.org/10.18185/erzifbed.923845
APA ACAR M, Ertugrul M (2021). Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 825 - 836. 10.18185/erzifbed.923845
Chicago ACAR MERVE,Ertugrul Mehmet Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14, no.2 (2021): 825 - 836. 10.18185/erzifbed.923845
MLA ACAR MERVE,Ertugrul Mehmet Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.14, no.2, 2021, ss.825 - 836. 10.18185/erzifbed.923845
AMA ACAR M,Ertugrul M Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 14(2): 825 - 836. 10.18185/erzifbed.923845
Vancouver ACAR M,Ertugrul M Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 14(2): 825 - 836. 10.18185/erzifbed.923845
IEEE ACAR M,Ertugrul M "Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, ss.825 - 836, 2021. 10.18185/erzifbed.923845
ISNAD ACAR, MERVE - Ertugrul, Mehmet. "Investigation of the Dependence of Ambipolarity on Channel Thickness for TMDC Based Field Effect Transistors". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14/2 (2021), 825-836. https://doi.org/10.18185/erzifbed.923845