Yıl: 2003 Cilt: 2 Sayı: 1 Sayfa Aralığı: 1 - 12 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Polyamines in plants: An overview

Öz:
Bu makalede poliaminlerin (PA) bitki büyüme ve gelişme olaylarındaki rolüne genel bir bakış yapılmaktadır. PA ler putresin, spermidin ve spermin, düşük molekül ağırlıklı ve tüm canlı organizmalarda mevcut olan maddelerdir. PA lerin ve bunların biyosentetik enzimlerinin bitkileri strese karşı korumaya yönelik olarak hücre bölünmesinden organogeneze kadar değişen geniş bir metabolik olaylar zincirinde yer aldığı ortaya konmuştur. Günümüzde PA yolu moleküler ve biyokimyasal yönden açıklığa kavuştuğu için genetik yaklaşımlarla düzenlenmeye uygundur. Çeşitli anahtar biyosentez enzimleri, arginin dekarboksilaz, ornitin dekarboksilaz ve S-adenozil metiyonin dekarboksilazın genleri farklı bitki türlerinde klonlanmıştır ve günümüzde bazı genlerin antikorlarını elde etmek mümkündür. PA biyosentezi genlerine hem over-ekspres ve hem de antisens transgenik yaklaşımlar PA lerin bitki büyüme gelişmesi için gerekliliğini daha da ortaya koymufltur. Bununla birlikte bu olaylardaki PA etkilerinin moleküler mekanizması hala açıklığa kavuşmamıştır. DNA mikroarray genom teknikleri kullanılarak yapılan gen ekspresyon analizleri bu bilefliklerin rollerini kesin olarak belirlemeye yardımcı olacaktır. PA lerin özellikle hücresel olaylardaki rolünü ortaya koymaya yönelik olarak proteomiğin potansiyeli de araştırılmıştır. İki-hibrit sistemi ve diğer proteomik yaklaşımların yoğun kullanımı, PA lerin sinyal iletimindeki rolüne yeni bir bakış açısı getirecektir. Bundan başka proteomiğin, PA metabolik yolunun homeostatik kontrolünü anlamaya yardımcı olabilecek, PA metabolizma enzimlerinin supramoleküler organizasyonunun belirlenmesinde çok önemli bir araç olduğu konusunda veriler mevcuttur.
Anahtar Kelime: bitki gelişimi poliaminler biyosentez mutant transgenik bitkiler

Konular: Biyokimya ve Moleküler Biyoloji

Bitkilerde poliaminler: Genel bir bakış

Öz:
This article presents an overview of the role of polyamines (PAs) in plant growth and developmental processes. The PAs, putrescine, spermidine and spermine are low molecular weight cations present in all living organisms. PAs and their biosynthetic enzymes have been implicated in a wide range of metabolic processes in plants, ranging from cell division and organogenesis to protection against stress. Because the PA pathway has now been molecularly and biochemically elucidated, it is amenable to modulation by genetic approaches. Genes for several key biosynthetic enzymes namely, arginine decarboxylase, ornithine decarboxylase and S-adenosyl methionine decarboxylase have been cloned from different plant species, and antibodies to some genes are now available. Both over-expressed and antisense transgenic approaches to PA biosynthetic genes have provided further evidence that PAs are required for plant growth and development. However, molecular mechanisms underlying PA effects on these processes remain unclear. Analysis of gene expression by using DNA microarray genomic techniques should help determine the precise role of these compounds. The potential of proteomics to unravel the role of PAs in particular cellular processes has also been examined. The extensive use of the two-hybrid system and other proteomic approaches will provide new insights into the role of PAs in signal transduction. Furthermore, there is evidence that proteomics provides an excellent tool for determining supramolecular organizations of PA metabolic enzymes which may help in understanding homeostatic control of this metabolic pathway.
Anahtar Kelime: biosynthesis mutants transgenic plants plant development polyamines

Konular: Biyokimya ve Moleküler Biyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abadjieva A, Pauwels K, Hilven P and Crabeel M. A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis. J Biol Chem. 276: 42869- 42880, 2001.
  • Apelbaum A, Burgoon A-C, Anderson JD, Lieberman M, Ben-Arie R and Mattoo AK. Polyamines inhibit synthesis of ethylene in higher plants. Plant physiol. 68: 453-456, 1981.
  • Apelbaum A, Goldlust A and Icekson I. Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol. 79: 635-640, 1985.
  • Applewhite PB, Kaur-Sawhney R and Galston AW. A role of spermidine in the bolting and flowering of Arabidopsis. Physologia Plantarum. 108: 314-320, 2000.
  • Bagni N, Torrigiani P and Barbieri P. Effect of various inhibitors of polyamine synthesis on the growth of Helianthus tuberosus. Med Biol. 59: 403-409, 1981.
  • Bagni N and Pistocchi R. Uptake and transport of polyamine and inhibitors of polyamine metabolism in plants. In: Biochemistry and Physiology of Polyamines in Plants. Slocum RD and Flores HE (Ed). CRC Press Inc, Boca Raton, FL USA 105-120, 1991.
  • Bais HP and Ravishankar GA. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue and Organ Culture. 69: 1-34, 2002.
  • Bastola DR and Minocha SC. Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol. 109: 63-71, 1995.
  • Bey P, Danzin C and Jung M. Inhibition of basic amino acid decarboxylases involved in polyamine biosynthesis. In: Inhibition of Polyamine Metabolism. McCann PP, Pegg AE and Sjoerdsma A (Ed). Academic Press, Orlando, USA 1-32, 1987.
  • Bhatnagar P, Minocha R and Minocha S. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. Plant Physiol. 128:1455-1469, 2002.
  • Bitonti AJ, Carara PJ, McCann PP and Bey P. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues. Biochem J. 242: 69-74, 1987.
  • Borrel A, Culiañez-Marcià, Atabella T, Besford RT, Flores D and Tiburcio AF. Arginine decarboxylase is localized in chloroplasts. Plant Physiol. 109: 771-776, 1995.
  • Cabanne F, Dalebroux MA, Martin-Tanguy J and Martin C. Hydroxycinnamic acid amides and ripening to flower of Nicotiana tabacum L. var. Xanthi n.c. Physiol Plant. 53: 399-404, 1981.
  • Capell T, Escobar C, Lui H, Burtin D, Lepri O and Christou P. Overexpression of the oat arginine decarboxylases cDNA in transgenic rice affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet. 97:246-254, 1998.
  • Cohen SS. A Guide to the Polyamines. Oxford University Press. New York, NY, 1998.
  • Cohn M, Tabor CW and Tabor H. Regulatory mutations affecting ornithine decarboxylase activity in S. cereviseae. J Bacteriol. 142: 792-799, 1980.
  • Deng XW, Dubiel W, Wei N, Hofmann K and Mundt K. Unified nomenclature for the COP9 signalosome and its subunits: An essential regulator of development. Trends Genet. 16: 289, 2000.
  • DeScenzo RA and Minocha SC. Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol. 22: 113-127, 1993.
  • Egea-Cortines M and Mizrahi Y. Polyamines in cell division, fruit set and development and seed germination. In: Biochemistry and Physiology of Polyamines in Plants. Slocum RD and Flores HE (Ed). CRC Press, Boca Raton, Florida, USA. 1991.
  • Evans PT and Malmberg RL. Do polyamines have a role in plant development? Annu Rev Plant Physiol Plant Mol Biol. 40: 235-269, 1989.
  • Even-Chen Z, Mattoo AK and Goren R. Inhibition of ethylene biosynthesis by aminoethoxyornylglycine and by polyamines shunt label from C14-methionine into spermidine in aged orange peel discs. Plant Physiol. 69: 385-388, 1982.
  • Farràs R, Ferrando A, Jásik J, Kleinow T, Ökresz L, Tiburcio AF, Salchert K, del Pozo C, Schell J and Koncz C. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20: 2742-2756, 2001.
  • Feirer RP, Mignon G and Litvay JD. Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science. 223: 1433-1434, 1984.
  • Ferrando A, Farràs R, Jasik J, Schell J and Koncz C. Intron- tagged epitope: A tool for facile detection and purification of proteins expressed in Agrobacterium-transformed plant cells. Plant J. 22: 553-560, 2000.
  • Ferrando A, Koncz-Kálmán Z, Farràs R, Tiburcio AF, Schell J and Koncz C. Detection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells. Nucleic Acids Res. 29: 3685-3693, 2001.
  • Ferrando A, Altabella T, Koncz C and Tiburcio AF. Proteomics: Emerging tools to characterize plant metabolons. Curr Top Plant Biol. In press.
  • Fields S and Song O. A novel genetic system to detect protein-protein interactions. Nature. 340: 245-246, 1989.
  • Fuhrer J, Kaur-Sawhney R, Shih LM and Galston AW. Effects of exogenous 1,3-diaminopropane and spermidine on senescence of oat leaves. II. Effects of polyamines on ethylene biosynthesis. Plant Physiol. 70: 1597-1600, 1982.
  • Galston AW and Tiburcio AF (Ed). Lecture Course on Polyamines as Modulators of Plant Development 257: Fundacion Jaun Madrid, March, 1991.
  • Galston AW and Kaur-Sawhney R. Polyamines as endogenous growth regulators. In: Plant Hormones, Physiology, Biochemistry and Molecular Biology (2nd edn). Davies PJ (Ed). Kluwer Academic Publishers, Dordrecht, The Netherlands. 158-178, 1995.
  • Galston AW, Kaur-Sawhney R, Altabella T and Tiburcio AF. Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta. 110:197-207, 1997.
  • Gerats AGM, Kaye C, Collins C and Malmberg ML. Polyamine levels in Petunia genotypes with normal and abnormal floral morphologies. Plant Physiol. 86: 390-393, 1988.
  • Hafner EW, Tabor CW and Tabor H. Mutants of E.coli that do not contain 1,4-diaminobutane (putrescine or spermidine). J Biol Chem. 254: 12419-12426, 1979.
  • Hamasaki-Katagiri N,Tabor CW and Tabor H. Spermidine biosynthesis in S. cereviseae: Polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187:35-43. 1997.
  • Hamasaki-Katagiri N, Katagiri Y, Tabor CW and Tabor H. Spermine is not essential for growth of S. cereviseae: Identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene. 210: 195-201, 1998.
  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G and Komeda Y. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 19: 4248-4256, 2000.
  • Heimer YM and Mizrahi Y. Characterization of ornithine decarboxylase of tobacco cells and tomato ovaries. Biochem J. 201: 373-376, 1982.
  • Hibasami H, Tanaka M, Nagai J and Ikeda T. Dicyclohexylamine, a potent inhibitor of spermidine synthase in mammalian cells. FEBS Letters. 116: 99-101, 1980.
  • Icekson I, Goldlust A and Apelbaum A. Influence of ethylene on S-adenosylmethionine activity in etiolated pea seedlings. J Plant Physiol. 119: 335-345, 1985.
  • Kakkar RJ and Rai VK. Plant polyamines in flowering and fruit ripening. Phytochemistry. 33: 1281-1288, 1993.
  • Kallio A, McCann PP. and Bey P. DL-α (Difluoromethyl) arginine: A potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylase. Biochemistry. 20: 3163-3166, 1981.
  • Kaur-Sawhney R, Flores HE and Galston AW. Polyamine oxidase in oat leaves: A cell wall-localized enzyme. Plant Physiol. 68: 494-498, 1981.
  • Kaur-Sawhney R, Shih Flores HE. and Galston AW. Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiol. 69: 405-410, 1982.
  • Kaur-Sawhney R, Tiburcio AF and Galston AW. Spermidine and flower bud differentiation in thin-layer explants of tobacco. Planta. 173: 282-284, 1988.
  • Kumar A, Taylor MA, Mad Arif SA and Davies HV. Potato plants expressing antisense and sense SAMDC transgenes show altered levels of polyamines and ethylene: Antisense plants display abnormal phenotypes. Plant J. 9: 147-158, 1996.
  • Kumar A, Altabella T, Taylor MA and Tiburcio AF. Recent advances in polyamine research. Trends Plant Sci. 2: 124-130, 1997.
  • Kumar A and Minocha SC. Transgenic manipulation of polyamine metabolism. In: Transgenic Plant Research. Lindsey K (Ed). Academic Publishers. Harwood. 187-199, 1998.
  • Lepri O, Bassie L, Safwat G, Thu-Hang P, Trung-Nghia P, Hölttä E, Christou P and Capell T. Over-expression of the human ornithine decarboxylase cDNA in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Mol Gen Genet. 266:303-312, 2001.
  • Lockhart DJ and Winzeler EA. Genomics, gene expression and DNA arrays. Nature. 405: 827-836, 2000.
  • Macrae M, Plasterk RHA and Coffino P. The ornithine decarboxylase gene of Caenorhabditis elegans-cloning, mapping and mutagenesis. Genetics. 140:517-525, 1995.
  • Malmberg RL and Rose DJ. Biochemical genetics of resistance to MGBG in tobacco: Mutants that alter SAM decarboxylases or polyamine ratios and floral morphology. Mol Gen Genet. 207: 9-14, 1987.
  • Malmberg RL, Watson MB, Galloway GL and Yu W. Molecular genetic analyses of plant polyamines. Critical Rev Plant Sci. 17: 199-224, 1998.
  • Martin-Tanguy J. The occurrence and possible function of hydroxy-cinnamoyl acid amides in plants. Plant Growth Regul. 3: 383-399, 1985.
  • Martin-Tanguy J. Metabolism and function of polyamines in plants: Recent development (new approaches). Plant Growth Regul. 34: 135-148, 2001.
  • Masgrau C, Altabella T, Farrás R, Flores D, Thompson AJ, Besford RT and Tiburcio AF. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J. 11: 465-473, 1997.
  • Mehta RA, Handa A, Li N and Mattoo AK. Ripening- activated expression of S-adenosylmethionine decarboxylase increases polyamine levels and influences ripening in transgenic tomato fruits (abstract no. 134). Plant Physiol. 114: S-44, 1997.
  • Mehta RA, Cassol T, Li N, Ali N, Handa AK and Mattoo AK. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotech. 20: 613-618, 2002.
  • Milton KW, Tabor H and Tabor CW. Paraquat toxicity is increased in E. coli defective in the synthesis of polyamines. P roc Natl Acad Sci USA. 87: 2851-2855,1990.
  • Minocha SC and Sun D. Stress tolerance in plants through transgenic manipulation of polyamine biosynthesis (abstract no. 1552). Plant Physiol. 114: S-297, 1997.
  • Mirza JI and Iqbal M. Spermine-resistant mutants of Arabidopsis thaliana with developmental abnormalities. Plant Growth Regul. 22:151-156, 1997.
  • Montague MJ, Koppenbrink JW and Jaworski EG. Polyamine metabolism in embryogenic cells of Daucus carota. Plant Physiol. 62: 430-433, 1978.
  • Muhitch MJ, Edwards LA and Fletcher JS. Influence of diamines and polyamines on the senescence of plant suspension cultures. Plant Cell Rep. 2: 82-84, 1983.
  • Neubauer G, Gottschalk A, Fabrizio P, Seraphin B, Luhrmann R, and Mann M. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. P roc Natl Acad Sci USA. 94: 385-390, 1997.
  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gomukirmizi N, Tuberosa R and Bohnert HJ. Monitoring large-scale changes in transcript abundance in drought- and salt-stresses barley. Plant Mol Biol. 48: 551-573, 2002.
  • Panicot M, Masgrau C, Borrell A, Cordeiro A, Tiburcio AF and Altabella T. Effects of putrescine accumulation in tobacco transgenic plants with different expression of oat arginine decarboxylases. Physiol Plant. 114:281-287, 2002a.
  • Panicot M, Minguet E, Ferrando A, Alcázar R, Blázquez MA, Carbonell J, Altabella T, Koncz C and Tiburcio AF. A polyamine metabolon involving aminopropyl transferases complexes in Arabidopsis. Plant Cell. 2002b. In press.
  • Pérez-Amador MA, León J, Green PJ and Carbonell J. Induction of arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol. In press.
  • Rafart-Pedros A, Mac Leod MR, Ross HA, McRae D, Tiburcio AF, Davies HD and Taylor M. Manipulation of the S-adenosylmethionine decarboxylase transcript level in potato tubers. Over-expression leads to an increase in tuber number and a change in tuber size distribution. Planta. 209: 153-160, 1999.
  • Rajam MV, Dagar S, Waie B, Yadav JS, Kumar PA, Shoeb F and Kumria R. Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J Biosci. 23:473-482, 1998.
  • Roy M and Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 160: 869-875, 2001.
  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H and Tabata S. Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8: 153-161, 2001.
  • Schaffer R, Langraf J, Pérez-Amador MA and Wisman E. Monitoring genome-wide expression in plants. Curr Opin Biotechnol. 11: 162-167, 2000.
  • Schena M, Shalon D, Davis RW and Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270: 467-470, 1995.
  • Slocum RD, Kaur-Sawhney R and Galston AW. The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys. 325: 283-303, 1984.
  • Slocum RD and Galston AW. Changes in polyamine biosynthesis associated with post-fertilization growh and development in tobacco ovary tissue. Plant Physiol. 79: 336-343, 1985.
  • Slocum RD and Galston AW. Inhibition of polyamine biosynthesis in plants and plant pathogenic fungi. In: Inhibition of Polyamine Metabolism. Biological Significance and Basis for New Therapies. McCann PP, Pegg AE and Sjoerdsma A (Ed). Academic Press, New York. 305-316, 1987.
  • Slocum RD. Polyamine biosynthesis in plants. In: Biochemistry and Physiology of Polyamines in Plants. Slocum RD and Flores HE (Ed). CRC Press, Boca Raton, FL, USA. 22-40, 1991a.
  • Slocum RD. Tissue and subcellular localisation of polyamines and enzymes of polyamine metabolism. In: Biochemistry and Physiology of Polyamines in Plants. Slocum RD and Flores HE (Ed). CRC Press, Boca Raton, FL, USA. 93-103, 1991b.
  • Smith TA and Marshall JHA. The di and polyamine oxidases of plants. In: P rogress in Polyamine Research (Advances in Experimental Biology and Medicine, 250) Plenum Press, New York. 573-587, 1988.
  • Soyka S and Heyer AG. Arabidopsis knockout mutation of ADC2 gene reveals inducibility by osmotic stress. FEBS Lett. 458: 219-223, 1999.
  • Srere PA. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 56: 89-124, 1987.
  • Steglich C and Schefler IE. Selection of ornithine decarboxylase-deficient mutants of Chinese hamster ovary cells. Methods Enzymol. 94: 108-111, 1983.
  • Sugumaran M, Nellaiappan K, Amaratunga C, Cardinale S and Scott T. Insect melanogenesis. III. Metabolon formation in the melanogenic pathway. Regulation of phenoloxidase activity by endogenous dopachrome isomerase. Arch Biochem Biophys. 378: 393-403, 2000.
  • Suttle JC. Effect of polyamines on ethylene production. Phytochemistry. 20: 1477-1480, 1981.
  • Tabor CW and Tabor H. Polyamines. Annu Rev Biochem. 5: 749-790, 1984.
  • Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P. Christou P and Capell T. Expression of a heterologous S- adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in SAMDC activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol. 129:1744-1754, 2002.
  • Tiburcio AF, Kaur-Sawhney R and Galston AW. Polyamine metabolism. In: Intermedatory Nitrogen Metabolism. 16, The Biochemistry of Plants. Miflin BJ. and Lea PJ (Ed). Academic Press. 283-325, 1990.
  • Tiburcio AF, Campos JL, Figueras X and Besford RT. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul. 12: 331- 340, 1993.
  • Tiburcio AF, Altabella T, Borrell A and Masgrau C. Polyamine metabolism and its regulation. Physiol Plant. 100: 664-674, 1997.
  • Tiburcio AF, Altabella T and Masgrau C. Polyamines. In: New Developments in Plant Hormone Research. Bisseling T and Schell J (Ed). Springer-Verlag, New York. 2002. In press.
  • Torrigiani P, Serafini-Fracassini D, Biondi S and Bagni N. Evidence for the subcellular localization of polyamines and their biosynthetic enzymes in plant cells. J Plant Physiol. 124: 23-29, 1986.
  • Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J and Deshaies RJ. Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell. 11: 3425-3439, 2000.
  • Walden R, Cordeiro A and Tiburcio AF. Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiol. 113: 1009-1013, 1997.
  • Walhout AJM, Boulton SJ and Vidal M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Y east. 17: 88-94, 2000.
  • Wang Y, Devereux W, Stewart TM and Casero RA. Cloning and characterization of human polyamine-modulated factor 1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N1- acetyltransferase gene. J Biol Chem. 274: 22095-22101, 1999.
  • Wang Y, Devereux W, Stewart TM and Casero RA. Polyamine-modulated factor-1 binds to the human homologue of the 7a subunit of the Arabidopsis COP9 signalosome: implications in gene expression. Biochem J. 366: 79-86, 2002.
  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL and Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 16: 1090-1094, 1995.
  • Watson MB, Emory KK, Piatak RM and Malmberg RL. Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J. 13: 231-239, 1998.
  • Whitney P and Morris D. Polyamine auxotrophs of S. cereviseae. J Bacteriol. 134: 214-220.
  • Williams-Ashman HG and Schenone A. Methyl-glyoxyl-bis (guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine. Biochem Biophys Res Commun. 46: 288-295, 1972.
  • Wisman E and Ohlrogge J. Arabidopsis microarray service facilities. Plant Physiol. 124: 1468-1471, 2000.
  • Young ND and Galston AW. Are polyamines transported in etiolated peas? Plant Physiol. 73: 912-914, 1983.
  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M and Snyder M. Global analysis of protein activities using proteome chips. Science. 293: 2101-2105, 2001.
APA SAWHNEY K, TIBURCIO A, ALTABELLA T, GALSTON A (2003). Polyamines in plants: An overview. , 1 - 12.
Chicago SAWHNEY Kaur Ravindar,TIBURCIO Antonio F.,ALTABELLA Teresa,GALSTON Arthur W. Polyamines in plants: An overview. (2003): 1 - 12.
MLA SAWHNEY Kaur Ravindar,TIBURCIO Antonio F.,ALTABELLA Teresa,GALSTON Arthur W. Polyamines in plants: An overview. , 2003, ss.1 - 12.
AMA SAWHNEY K,TIBURCIO A,ALTABELLA T,GALSTON A Polyamines in plants: An overview. . 2003; 1 - 12.
Vancouver SAWHNEY K,TIBURCIO A,ALTABELLA T,GALSTON A Polyamines in plants: An overview. . 2003; 1 - 12.
IEEE SAWHNEY K,TIBURCIO A,ALTABELLA T,GALSTON A "Polyamines in plants: An overview." , ss.1 - 12, 2003.
ISNAD SAWHNEY, Kaur Ravindar vd. "Polyamines in plants: An overview". (2003), 1-12.
APA SAWHNEY K, TIBURCIO A, ALTABELLA T, GALSTON A (2003). Polyamines in plants: An overview. Journal of Cell and Molecular Biology, 2(1), 1 - 12.
Chicago SAWHNEY Kaur Ravindar,TIBURCIO Antonio F.,ALTABELLA Teresa,GALSTON Arthur W. Polyamines in plants: An overview. Journal of Cell and Molecular Biology 2, no.1 (2003): 1 - 12.
MLA SAWHNEY Kaur Ravindar,TIBURCIO Antonio F.,ALTABELLA Teresa,GALSTON Arthur W. Polyamines in plants: An overview. Journal of Cell and Molecular Biology, vol.2, no.1, 2003, ss.1 - 12.
AMA SAWHNEY K,TIBURCIO A,ALTABELLA T,GALSTON A Polyamines in plants: An overview. Journal of Cell and Molecular Biology. 2003; 2(1): 1 - 12.
Vancouver SAWHNEY K,TIBURCIO A,ALTABELLA T,GALSTON A Polyamines in plants: An overview. Journal of Cell and Molecular Biology. 2003; 2(1): 1 - 12.
IEEE SAWHNEY K,TIBURCIO A,ALTABELLA T,GALSTON A "Polyamines in plants: An overview." Journal of Cell and Molecular Biology, 2, ss.1 - 12, 2003.
ISNAD SAWHNEY, Kaur Ravindar vd. "Polyamines in plants: An overview". Journal of Cell and Molecular Biology 2/1 (2003), 1-12.