Yıl: 2021 Cilt: 51 Sayı: 4 Sayfa Aralığı: 2159 - 2166 Metin Dili: İngilizce DOI: 10.3906/sag-2008-291 İndeks Tarihi: 14-01-2022

Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats

Öz:
Background/aim: Calcineurin, an inhibitor of calcium dependent phosphatase is highly presented in a brain of an Alzheimer’s disease. Aging brain gets more sensitive to hyperactivation of calcineurin, and this event causes tau neurofibrillary plaque accumulation, which is one of the outcomes of this disease. The regions of hippocampus are much effected from the results of this process. Our hypothesis is that a calcineurin inhibitor, tacrolimus, could prevent the accumulation and the decrease of the neuronal cells. Therefore, this immunosuppressive drug could be a candidate for an early treatment of Alzheimer disease. Materials and methods: Fifteen male Wistar albino rats were divided to three groups; control, Alzheimer, and Alzheimer+Tacrolimus. The Alzheimer group received an injection of streptozotocin intracerebroventricularly for the purpose of modelling the disease via generating free radicals leading a cognitive impairment. Alzheimer+Tacrolimus group first received an oral drug, a calcineurin inhibitor for 10 days afterwards prepared for the model as same as the Alzheimer group received. Finally, all groups performed the Morris water maze test for four days then sacrificed. For the aim of counting neurons in the hippocampus stereological methods, as well as for an evaluation of cellular response to stress in dentate gyrus, a c-Fos immunohistochemistry was performed. Results: According to the probe trial of Morris water maze test, the latency time was dramatically higher at both Alzheimer and Alzheimer+Tacrolimus group (p < 0.01). We confirmed these results with our stereology data. The results from stereology technique indicate that there was a neuronal decrease at the hippocampus regions in Alzheimer and Alzheimer+Tacrolimus group. Our outcomes from immunohistochemical data showed a significant increase in the number of c-Fos-positive cells in Alzheimer group when comparing with Alzheimer+Tacrolimus group (p < 0.001). Conclusion: There was none preventive effect for neuronal loss in the hippocampus under the effect of tacrolimus drug according to stereological results. However, tacrolimus administration may have reduced cellular stress and cell damage.Key words: Alzheimer’s disease, c-Fos, Morris water maze test, stereology, tacrolimus
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. He W, Goodkind D, Kowal PR. An aging world: 2015. International Population Reports 2016; 1-11. doi: 10.13140/ RG.2.1.1088.9362
  • 2. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine 2016; 8 (6): 595-608. doi: 10.15252/emmm.201606210
  • 3. Behl C. Apoptosis and Alzheimer’s disease. Journal of Neural Transmission 2000; 107 (11): 1325-1344. doi: 10.1023/a:1009625323388
  • 4. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F et al. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology 2015; 14 (4): 388-405. doi: 10.1016/S1474- 4422(15)70016-5
  • 5. Geldenhuys WJ, Darvesh AS. Pharmacotherapy of Alzheimer’s disease: current and future trends. Expert Review Neurotherapeutics 2015; 15 (1): 3-5. doi: 10.1586/14737175.2015.990884
  • 6. Demetrius LA, Simon DK. An inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology 2012; 13 (6): 583-594. doi: 10.1007/s10522-012-9403-6
  • 7. Furman JL, Norris CM. Calcineurin and glial signaling: neuroinflammation and beyond. Journal of Neuroinflammation 2014; 11 (1): 1-12. doi: 10.1186/s12974-014-0158-7
  • 8. Reese C, Taglialatela L. A role for calcineurin in Alzheimer’s disease. Current Neuropharmacology 2011; 9 (4): 685-692. doi: 10.2174/157015911798376316
  • 9. Shah SZA, Zhao D, Taglialatela G, Khan SH, Hussain T et al. Early minocycline and late FK506 treatment improves survival and alleviates neuroinflammation, neurodegeneration, and behavioral deficits in prion-infected hamsters. Neurotherapeutics 2017; 14 (2): 463-483. doi: 10.1007/s13311- 016-0500-0
  • 10. Rath T. Tacrolimus in transplant rejection. Expert Opinion on Pharmacotherapy 2013; 14 (1): 115-122. doi: 10.1517/14656566.2013.751374
  • 11. Tung TH. Tacrolimus (FK506): Safety and Applications in Reconstructive Surgery. Hand (New York, NY) 2010; 5 (1): 1-8. doi: 10.1007/s11552-009-9193-8
  • 12. Pardo R, Colin E, Régulier E, Aebischer P, Déglon N et al. Inhibition of calcineurin by FK506 protects against polyglutamine-huntingtin toxicity through an increase of huntingtin phosphorylation at S421. Journal of Neuroscience 2006; 26 (5): 1635-1645. doi: 10.1523/ JNEUROSCI.3706-05.2006
  • 13. Tozawa T, Nishimura A, Ueno T, Kaneda D, Miyanomae Y et al. A 5-Year follow-up of triple-seronegative myasthenia gravis successfully treated with tacrolimus therapy. Neuropediatrics 2018; 49 (03): 200-203. doi: 10.1055/s-0037-1618591
  • 14. Chen B, Wu Q, Ke G, Bu B. Efficacy and safety of tacrolimus treatment for neuromyelitis optica spectrum disorder. Scientific Reports 2017; 7 (1): 1-8. doi: 10.1038/s41598-017- 00860-y
  • 15. Hoyer S, Müller D and Plaschke K. Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism. Journal of Neural Transmission 1994; 44: 259- 268. doi: 10.1007/978-3-7091-9350-1_20
  • 16. Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition: Elsevier 2006.
  • 17. Santos TO, Mazucanti CH, Xavier GF and Torrão AS. Early and late neurodegeneration and memory disruption after intracerebroventricular streptozotocin. Physiology & Behavior 2012; 107 (3): 401-413.
  • 18. Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Molecular Neurobiology 2016; 53 (3): 1741-1752. doi: 10.1016/j.physbeh.2012.06.019
  • 19. Olesen MV, Needham EK, Pakkenberg B. The optical fractionator technique to estimate cell numbers in a rat model of electroconvulsive therapy. Journal of Visualized Experiments 2017; 125: e55737. doi: 10.3791/55737
  • 20. Gundersen HJG. Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. Journal of Microscopy 1977; 111 (2): 219-223. doi: 10.1111/j.1365- 2818.1977.tb00062.x
  • 21. Countryman RA, Orlowski JD, Brightwell JJ, Oskowitz AZ, Colombo PJ. CREB phosphorylation and c-Fos expression in the hippocampus of rats during acquisition and recall of a socially transmitted food preference. Hippocampus 2005; 15 (1): 56-67. doi: 10.1002/hipo.20030
  • 22. Santos PL, Brito RG, Matos JPS, Quintans JS, Quintans-Júnior LJ. Fos protein as a marker of neuronal activity: a useful tool in the study of the mechanism of action of natural products with analgesic activity. Molecular Neurobiology 2018; 55 (6): 4560- 4579. doi: 10.1007/s12035-017-0658-4
  • 23. Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. Journal of Visualized Experiments 2011; 53: e2920. doi: 10.3791/2920
  • 24. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols 2006; 1 (2): 848-858. doi: 10.1038/ nprot.2006.116
  • 25. Niikura T, Tajima H, Kita Y. Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Current Neuropharmacology 2006; 4 (2): 139-147. doi: 10.2174/157015906776359577
  • 26. Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimaraes DM et al. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 2013; 136 (12): 3738-3752. doi: 10.1093/brain/ awt273
  • 27. Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatria Danubina 2012; 24 (2): 152-158.
  • 28. Bu J, Zu H. Mechanism underlying the effects of doxepin on β-amyloid-induced memory impairment in rats. Iranian Journal of Basic Medical Sciences. 2017; 20 (9): 1044-1049. doi: 10.22038/IJBMS.2017.9274
  • 29. Labrousse VF, Costes L, Aubert A, Darnaudéry M, Ferreira G et al. Impaired interleukin-1β and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X 7 receptor-deficient mice. PloS one 2009; 4 (6): e6006. doi: 10.1371/journal.pone.0006006
  • 30. Tsai YW, Yang YR, Wang PS, Wang RY. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 2011; 6 (8): e24001. doi: 10.1371/journal.pone.0024001
  • 31. Beauquis J, Vinuesa A, Pomilio C, Pavía P, Galván V et al. Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer’s disease. Hippocampus 2014; 24 (3): 257-269. doi: 10.1002/hipo.22219
APA Köylü A, ZUHAL B, DELİBAŞ B (2021). Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. , 2159 - 2166. 10.3906/sag-2008-291
Chicago Köylü Ayşe,ZUHAL BERRİN,DELİBAŞ Burcu Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. (2021): 2159 - 2166. 10.3906/sag-2008-291
MLA Köylü Ayşe,ZUHAL BERRİN,DELİBAŞ Burcu Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. , 2021, ss.2159 - 2166. 10.3906/sag-2008-291
AMA Köylü A,ZUHAL B,DELİBAŞ B Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. . 2021; 2159 - 2166. 10.3906/sag-2008-291
Vancouver Köylü A,ZUHAL B,DELİBAŞ B Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. . 2021; 2159 - 2166. 10.3906/sag-2008-291
IEEE Köylü A,ZUHAL B,DELİBAŞ B "Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats." , ss.2159 - 2166, 2021. 10.3906/sag-2008-291
ISNAD Köylü, Ayşe vd. "Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats". (2021), 2159-2166. https://doi.org/10.3906/sag-2008-291
APA Köylü A, ZUHAL B, DELİBAŞ B (2021). Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turkish Journal of Medical Sciences, 51(4), 2159 - 2166. 10.3906/sag-2008-291
Chicago Köylü Ayşe,ZUHAL BERRİN,DELİBAŞ Burcu Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turkish Journal of Medical Sciences 51, no.4 (2021): 2159 - 2166. 10.3906/sag-2008-291
MLA Köylü Ayşe,ZUHAL BERRİN,DELİBAŞ Burcu Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turkish Journal of Medical Sciences, vol.51, no.4, 2021, ss.2159 - 2166. 10.3906/sag-2008-291
AMA Köylü A,ZUHAL B,DELİBAŞ B Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turkish Journal of Medical Sciences. 2021; 51(4): 2159 - 2166. 10.3906/sag-2008-291
Vancouver Köylü A,ZUHAL B,DELİBAŞ B Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turkish Journal of Medical Sciences. 2021; 51(4): 2159 - 2166. 10.3906/sag-2008-291
IEEE Köylü A,ZUHAL B,DELİBAŞ B "Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats." Turkish Journal of Medical Sciences, 51, ss.2159 - 2166, 2021. 10.3906/sag-2008-291
ISNAD Köylü, Ayşe vd. "Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats". Turkish Journal of Medical Sciences 51/4 (2021), 2159-2166. https://doi.org/10.3906/sag-2008-291