Yıl: 2021 Cilt: 51 Sayı: 4 Sayfa Aralığı: 2185 - 2192 Metin Dili: İngilizce DOI: 10.3906/sag-2011-323 İndeks Tarihi: 14-01-2022

Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise

Öz:
Background/aim: Physical exercise is a state of physiological stress that requires adaptation of the organism to physical activity. Glycogen is an important and essential energy source for muscle contraction. Skeletal muscle and liver are two important glycogen stores, and the energy required to maintain exercise in rodents are provided by destruction of this glycogen depot. In this study, the effects of endogenous opioid peptide antagonism at the central nervous system level on tissue glycogen content after exhaustive exercise were investigated. Materials and methods: Rats had intracerebroventricularly (icv) received nonspecific opioid peptide receptor antagonist, naloxone (50 μg/10 μL in saline) and δ-opioid receptor-selective antagonist naltrindole (50 μg/10 μL in saline) and then exercised till exhaustion. After exhaustion, skeletal muscle, heart, and liver were excised immediately. Results: Both opioid peptide antagonists decreased glycogen levels in skeletal muscle. Although, in soleus muscle, this decrease was not statistically significant (p > 0.05), in gastrocnemius muscle, it was significant in the icv naloxone administered group compared with control (p < 0.05). Heart glycogen levels increased significantly in both naloxone and naltrindole groups compared to control and sham-operated groups (p < 0.05). Heart glycogen levels were higher in the naloxone group than naltrindole (p < 0.05). Liver glycogen levels were elevated significantly with icv naloxone administration compared with the control group (p < 0.05). Glycogen levels in the naloxone group was also significantly higher than the naltrindole group (p < 0.05). Conclusion: Our findings indicate that icv administered opioid peptide antagonists may play a role in glycogen metabolism in peripheral tissues such as skeletal muscle, heart, and liver.Keywords: Exercise, glycogen, endogenous opioid peptide, naloxone, naltrindole
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Fox EL, Bowers RW, Foss ML. Energy Sources In: The physiological basis of physical education and athletics. 4th ed. Dubuque (Iowa): wcb Publishers, 1989.
  • 2. Roach PJ, Skurat AV, Haris RA. Regulation of glycogen metabolism. In: Cherrington AD, Jefferson LS (editors). The endocrine pancreas and regulation of metabolism, (NY), Oxford University Press; 2001.
  • 3. Vøllestad NK, Blom PCS. Effect of varying exercise intensity on glycogen depletion in human muscle fibers. Acta Physiologica Scandinavica 1985; 125 (3): 395-405. doi: 10.1111/j.1748- 1716.1985.tb07735.x
  • 4. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise. Journal of Applied Physiology 1985; 78: 288-292. doi: 10.1152/ jappl.1995.78.1.288
  • 5. Kayser B. Exercise starts and ends in the brai. European Journal of Applied Physiology 2003; 90 (3-4): 411-419. doi: 10.1007/ s00421-003-0902-7
  • 6. Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. The Journal of Experimental Biology 2001; 204: 3225-3234. doi: 10.1242/jeb.204.18.3225
  • 7. Molina PE, Abumrad NN. Metabolic effects of opiates and opioid peptides. Advances in Neuroimmunology 1994; 4 (2): 105-116. doi: 10.1016/s0960-5428(05)80005-1
  • 8. Rosa Neto JC, Lira FS, Oyama LM, Zanchi NE, Yamashita AS et al. Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats. European Journal of Applied Physiology 2009; 106: 697-704. doi:10.1007/s00421-009-1070-1
  • 9. Guillemin R, Vargo T, Rossier J, Minick S, Ling N et al. β-endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science 1977; 197 (4311): 1367-1369. doi: 10.1126/science.197601
  • 10. Oleshansky MA, Zoltick JM, Herman RH, Mougey EH, Meyerhoff JL. The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. European Journal of Applied Physiology and Occupational Physiology 1990; 59 (6): 405-410. doi:10.1007/BF02388620
  • 11. Sforzo GA. Opioids and exercise. An update. Sports Medicine 1989; 7 (2): 109-124. doi: 10.2165/00007256-198907020-00003
  • 12. Harber VJ, Sutton JR. Endorphins and exercise. Sports Medicine 1984; 1: 154-171. doi: 10.2165/00007256-198401020-00004
  • 13. Vaccarino AL, Kastin AJ. Endogenous opiates: 2000. Peptides 2001; 22: 2257-2328. doi: 10.1016/s0196-9781(01)00566-62
  • 14. Angelopoulos TJ, Robertson RJ, Goss FL, Utter A. Insulin and glucagon immunoreactivity during high-intensity exercise under opiate blockade. European Journal of Applied Physiology and Occupational Physiology 1997; 75: 132-135. doi: 10.1007/ s004210050137
  • 15. Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H et al. Endogenous opioids: biology and function. Annual Review of Neuroscience 1984; 7: 223-255. doi: 10.1146/annurev. ne.07.030184.001255
  • 16. Hashiguchi Y, Molina PE, Boxer R, Naukam R, Abumrad NN. Differential responses of brain, liver, and muscle glycogen to opiates and surgical stress. Surgery Today 1998; 28 (4): 471- 474. doi: 10.1007/s005950050168
  • 17. Paxinos G, Watson C. The rat brain: in stereotaxic coordinates. 4th ed. San Diego, (CA): Academic Press; 1998
  • 18. Lo S, Russell JC, Taylor AW. Determination of glycogen in small tissue samples. Journal of Applied Physiology 1970; 28 (2): 234-236. doi: 10.1152/jappl.1970.28.2.234
  • 19. Goldfarb AH, Jamurtas AZ. Beta-endorphin response to exercise. An update. Sports Medicine 1997; 24 (1): 8-16. doi: 10.2165/00007256-199724010-00002
  • 20. Radosevich PM, Lacy DB, Brown LL, Williams PE, Abumrad NN. Central effects of beta-endorphins on glucose homeostasis in the conscious dog. The American Journal of Physiology 1989; 256 (2 Pt 1): E322-330. doi: 10.1152/ajpendo.1989.256.2.E322
  • 21. Stagg NJ, Mata HP, Ibrahim MM, Henriksen EJ, Porreca F et al. Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids. Anesthesiology 2011; 114 (4): 940-948. doi:10.1097/ ALN.0b013e318210f880
  • 22. Angelopoulos TJ, Robertson RJ, Goss FL, Utter A. Insulin and glucagon immunoreactivity during high-intensity exercise under opiate blockade. European Journal of Applied Physiology and Occupational Physiology 1997; 75 (2): 132- 135. doi: 10.1007/s004210050137
  • 23. Soares DD, Lima NR, Coimbra CC, Marubayashi U. Evidence that tryptophan reduces mechanical efficiency and running performance in rats. Pharmacology, Biochemistry, and Behavior 2003; 74 (2): 357-362. doi: 10.1016/s0091- 3057(02)01003-1
  • 24. Ryder JW, Kawano Y, Galuska D, Fahlman R, WallbergHenriksson H et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB journal: Official Publication of the Federation of American Societies for Experimental Biology 1999; 13 (15): 2246-2256. doi: 10.1096/fasebj.13.15.2246
  • 25. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. The American Journal of Physiology,1993; 265: E380-391. doi: 10.1152/ ajpendo.1993.265.3.E380
  • 26. Katz A, Broberg S, Sahlin K, Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. The American Journal of Physiology 1986; 251: E65-70. doi: 10.1152/ ajpendo.1986.251.1.E65
  • 27. Katz A, Sahlin K, Broberg S. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. The American Journal of Physiology 1991; 260: E411–415. doi: 10.1152/ajpendo.1991.260.3.E411
  • 28. Peng CH, Walsh O. Effects of morphine on the hormonal control of metabolism. I. In vitro effects of morphine and hydrocortisone on utilization of glucose by muscle of normal and chronically morphinised rats. Biochemical Pharmacology 1963; 12: 921-930. doi: 10.1016/0006-2952(63)90014-5
  • 29. Schwarz L, Kindermann W. Changes in beta-endorphin levels in response to aerobic and anaerobic exercise. Sports Medicine 1992; 13 (1): 25-36. doi: 10.2165/00007256-199213010-00003
  • 30. Evans AA, Tunnicliffe G, Knights P, Bailey CJ, Smith ME. Delta opioid receptors mediate glucose uptake in skeletal muscles of lean and obese-diabetic (ob/ob) mice. Metabolism 2001; 50 (12): 1402-1408. doi: 10.1053/meta.2001.28158
  • 31. Elde R, Hökfelt T, Johansson O, Terenius L. Immunohistochemical studies using antibodies to leucineenkephalin: initial observations on the nervous system of the rat. Neuroscience 1976; 1 (4): 349-351. doi: 10.1016/0306- 4522(76)90063-4
  • 32. Goodman RR, Snyder SH, Kuhar MJ, Young WS 3rd. Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proceedings of the National Academy of Sciences of the United States of America 1980; 77 (10): 6239-6243. doi: 10.1073/pnas.77.10.6239
  • 33. Holaday JW. Cardiovascular consequences of endogenous opiate antagonism. Biochemical Pharmacology 1983; 32 (4): 573-585. doi: 10.1016/0006-2952(83)90479-3
  • 34. Barron BA, Jones CE, Caffrey JL. Pericardial repair depresses canine cardiac catecholamines and met-enkephalin. Regulatory Peptides 1995; 59 (3): 313-320. doi: 10.1016/0167- 0115(95)00086-q
  • 35. McLaughlin PJ, Wu Y. Opioid gene expression in the developing and adult rat heart. Developmental Dynamics 1998; 211 (2): 153- 163. doi: 10.1002/(SICI)1097-0177(199802)211:2<153::AIDAJA4>3.0.CO;2-G
  • 36. Springhorn JP, Claycomb WC. Preproenkephalin mRNA expression in developing rat heart and in cultured ventricular cardiac muscle cells. The Biochemical Journal 1989; 258 (1): 73-78. doi: 10.1042/bj2580073
  • 37. McArdle WD, Katch FI, Katch VL. Exercise Physiology; Energy, Nutrition and Human Performance. 6th ed. Philadelphia, Pennsylvania, USA: Lippincott Williams & Wilkins, 2007.
  • 38. Güney Ş, İlhan AŞ, Çetin F, Dinçer S. The effects of intracerebroventrically administered opioid peptide receptor antagonists on exercise performance. Isokinetics and Exercise Science 2012; 20: 205-209. doi: 10.3233/IES-2012-0460
  • 39. Hashiguchi Y, Molina PE, Abumrad NN. Morphine-3- glucuronide: hyperglycemic and neuroendocrine potentiating effects. Brain Research 1995; 694 (1-2): 13-20. doi: 10.1016/0006-8993(95)00697-o
  • 40. Gunion MW, Rosenthal MJ, Morley JE, Miller S, Zib B et al. μ-receptor mediates elevated glucose and corticosteron after third ventricle injection of opioid peptides. The American Journal of Physiology 1991; 261: R70-R81. doi: 10.1152/ ajpregu.1991.261.1.R70
  • 41. Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC. Exercise and circulating cortisol levels: the intensity threshold effect. Journal of Endocrinological Investigation 2008; 31 (7): 587-591. doi:10.1007/BF03345606
  • 42. Sgherza AL, Axen K, Fain R, Hoffman RS, Dunbar CC et al Effect of naloxone on perceived exertion and exercise capacity during maximal cycle ergometry. Journal of Applied Physiology 2002; 93: 2023-2028. doi:10.1152/japplphysiol.00521.2002
  • 43. Sullivan LC, Chavera TS, Jamshidi RJ, Berg KA, Clarke WP. Constitutive desensitization of opioid receptors in peripheral sensory neurons. The Journal of Pharmacology and Experimental Therapeutics 2016; 359 (3): 411-419. doi: 10.1124/jpet.116.232835
  • 44. Higashi E, Hirayama S, Nikaido J, Shibasaki M, Kono T et al. Development of novel δ opioid receptor inverse agonists without a basic nitrogen atom and their antitussive effects in mice. ACS Chemical Neuroscience 2019; 10 (9): 3939-3945. doi: 10.1021/acschemneuro.9b00368
APA İLHAN A, Guney S, Dinçer S (2021). Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. , 2185 - 2192. 10.3906/sag-2011-323
Chicago İLHAN Ayşe Şebnem,Guney Sevin,Dinçer Sibel Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. (2021): 2185 - 2192. 10.3906/sag-2011-323
MLA İLHAN Ayşe Şebnem,Guney Sevin,Dinçer Sibel Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. , 2021, ss.2185 - 2192. 10.3906/sag-2011-323
AMA İLHAN A,Guney S,Dinçer S Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. . 2021; 2185 - 2192. 10.3906/sag-2011-323
Vancouver İLHAN A,Guney S,Dinçer S Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. . 2021; 2185 - 2192. 10.3906/sag-2011-323
IEEE İLHAN A,Guney S,Dinçer S "Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise." , ss.2185 - 2192, 2021. 10.3906/sag-2011-323
ISNAD İLHAN, Ayşe Şebnem vd. "Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise". (2021), 2185-2192. https://doi.org/10.3906/sag-2011-323
APA İLHAN A, Guney S, Dinçer S (2021). Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. Turkish Journal of Medical Sciences, 51(4), 2185 - 2192. 10.3906/sag-2011-323
Chicago İLHAN Ayşe Şebnem,Guney Sevin,Dinçer Sibel Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. Turkish Journal of Medical Sciences 51, no.4 (2021): 2185 - 2192. 10.3906/sag-2011-323
MLA İLHAN Ayşe Şebnem,Guney Sevin,Dinçer Sibel Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. Turkish Journal of Medical Sciences, vol.51, no.4, 2021, ss.2185 - 2192. 10.3906/sag-2011-323
AMA İLHAN A,Guney S,Dinçer S Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. Turkish Journal of Medical Sciences. 2021; 51(4): 2185 - 2192. 10.3906/sag-2011-323
Vancouver İLHAN A,Guney S,Dinçer S Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise. Turkish Journal of Medical Sciences. 2021; 51(4): 2185 - 2192. 10.3906/sag-2011-323
IEEE İLHAN A,Guney S,Dinçer S "Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise." Turkish Journal of Medical Sciences, 51, ss.2185 - 2192, 2021. 10.3906/sag-2011-323
ISNAD İLHAN, Ayşe Şebnem vd. "Effects of intracerebroventricularly administered opioid peptide antagonists on tissue glycogen levels in rats after exercise". Turkish Journal of Medical Sciences 51/4 (2021), 2185-2192. https://doi.org/10.3906/sag-2011-323