Yıl: 2021 Cilt: 51 Sayı: 3 Sayfa Aralığı: 1465 - 1471 Metin Dili: İngilizce DOI: 10.3906/sag-2007-254 İndeks Tarihi: 19-01-2022

Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer

Öz:
Background/aim: Numerous studies show that cancer risk is reduced by consumption of soy-based foods containing genistein, but its effects on the glycogen synthase kinase-3 pathway (GSK-3) in ovarian cancer is unknown. Therefore, we tested the properties of genistein on inflammatory biomarkers and GSK-3 signaling pathways in the ovaries of old laying hens with ovarian cancer. Materials and methods: A total of 300 laying hens were distributed into three groups as follows: group 1, animals fed a standard diet (comprising 22.39 mg of genistein/kg of diet); groups 2 and 3, animals fed a standard diet reconstituted with supplementation of 400 mg or 800 mg of genistein/kg of diet, respectively. Results: Genistein modulated the inflammatory biomarkers by decreasing serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared with control (p < 0.001). Moreover, it upregulated insulin receptor substrate-1 (p-IRS-1) and protein kinase B (p-AKT), but downregulated GSK-3α and β after treatment. It acts in a dose-dependent manner. Conclusion: Genistein exhibited an anticancer effect by reducing proinflammatory biomarkers levels and inhibiting GSK-3 expression in the ovaries of old laying hens. It is a potential candidate in the chemoprevention and/or treatment of ovarian cancer.Key words: Genistein, GSK-3, IL-6, TNF-α, laying hens, ovarian cancer
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM et al. Estimating the global cancer incidence and mortality in 2018: globocan sources and methods. International Journal of Cancer 2019; 144 (8): 1941-1953. doi: 10.1002/ijc.31937
  • 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68 (6): 394-424. doi: 10.3322/caac.21492
  • 3. Lee AH, Su D, Pasalich M, Tang L, Binns CW et al. Soy and isoflavone intake associated with reduced risk of ovarian cancer in southern Chinese women. Nutrition Research 2014; 34 (4): 302-307. doi: 10.1016/j.nutres.2014.02.005
  • 4. Emori MM, Drapkin R. The hormonal composition of follicular fluid and its implications for ovarian cancer pathogenesis. Reproductive Biology and Endocrinology (RB&E) 2014; 12: 60. doi: 10.1186/1477-7827-12-60
  • 5. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Practice and Research. Clinical Obstetrics and Gynaecology 2016; 41: 3-14. doi: 10.1016/j.bpobgyn.2016.08.006
  • 6. Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends in Immunology 2010; 31 (1): 24-31. doi: 10.1016/j. it.2009.09.007
  • 7. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine 2010; 49 (11): 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006
  • 8. Kim MK, Kim K, Han JY, Lim JM, Song YS. Modulation of inflammatory signaling pathways by phytochemicals in ovarian cancer. Genes and Nutrition 2011; 6 (2): 109-115. doi: 10.1007/s12263-011-0209-y
  • 9. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. Journal of the National Cancer Institute 1999; 91 (17): 1459-1467. doi: 10.1093/jnci/91.17.1459
  • 10. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M et al. Genistein and cancer: current status, challenges, and future directions. Advances in Nutrition 2015; 6 (4): 408-419. doi: 10.3945/an.114.008052
  • 11. Myung SK, Ju W, Choi HJ, Kim SC, Korean Meta-Analysis (KORMA) Study Group. Soy intake and risk of endocrinerelated gynecological cancer: a meta-analysis. BJOG: An International Journal of Obstetrics and Gynaecology 2009; 116 (13): 1697-1705. doi: 10.1111/j.1471-0528.2009.02322.x
  • 12. Bosetti C, Negri E, Franceschi S, Talamini R, Montella M et al. Olive oil, seed oils and other added fats in relation to ovarian cancer (Italy). Cancer Causes and Control 2002; 13 (5): 465- 470. doi: 10.1023/a:1015760004130
  • 13. Tsafa E, Al-Bahrani M, Bentayebi K, Przystal J, Suwan K, et al. The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction. Oncotarget 2016; 7 (32): 52135-52149. doi: 10.18632/oncotarget.10662
  • 14. Choi EJ, Kim T, Lee MS. Pro-apoptotic effect and cytotoxicity of genistein and genistein in human ovarian cancer SK-OV-3 cells. Life Sciences 2007; 80 (15): 1403-1408. doi: 10.1016/j. lfs.2006.12.031
  • 15. Luo H, Jiang BH, King SM, Chen YC. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Journal Nutrition & Cancer 2008; 60 (6): 800-809. doi: 10.1080/01635580802100851
  • 16. Lee JY, Kim HS, Song YS. Genistein as a potential anticancer agent against ovarian cancer. Journal of Traditional and Complementary Medicine 2012; 2 (2): 96-104. doi: 10.1016/ s2225-4110(16)30082-7
  • 17. Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H et al. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prevention Research (Philadelphia, Pa.) 2018; 11 (1): 59-67. doi: 10.1158/1940-6207.CAPR-16-0289
  • 18. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276 (5317): 1423-1425. doi: 10.1126/ science.276.5317.1423
  • 19. Hawkridge AM. The chicken model of spontaneous ovarian cancer. Proteomics Clinical Applications 2014; 8 (9-10): 689- 699. doi: 10.1002/prca.201300135
  • 20. Zhu J, Ren J, Tang L. Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Molecular Medicine Reports 2018; 17 (5): 7265-7273. doi: 10.3892/ mmr.2018.8760
  • 21. Sanaei M, Kavoosi F, Valiani A, Ghobadifar MA. Effect of genistein on apoptosis and proliferation of hepatocellular carcinoma hepa1-6 cell line. International Journal of Preventive Medicine 2018; 9: 12. doi:10.4103/ijpvm.IJPVM_249_16
  • 22. Ozturk SA, Alp E, Yar Saglam AS, Konac E, Menevse ES. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. Journal of Cancer Research and Therapeutics 2018; 14 (2): 328-334. doi:10.4103/0973- 1482.202886
  • 23. Wang G, Zhang D, Yang S, Wang Y, Tang Z et al. Coadministration of genistein with doxorubicin-loaded polypeptide nanoparticles weakens the metastasis of malignant prostate cancer by amplifying oxidative damage. Biomaterials Science 2018; 6 (4): 827-835. doi: 10.1039/c7bm01201b
  • 24. Ye D, Li Z, Wei C. Genistein inhibits the S-Phase kinaseassociated protein 2 expression in breast cancer cells. Experimental and Therapeutic Medicine 2018; 15 (1): 1069- 1075. doi: 10.3892/etm.2017.5489
  • 25. Murdoch WJ, Van Kirk EA, Alexander BM. DNA damages in ovarian surface epithelial cells of ovulatory hens. Experimental Biology and Medicine 2005; 230 (6): 429-433. doi: 10.1177/15353702-0323006-11
  • 26. Zhuge Y, Lagman JA, Ansenberger K, Mahon CJ, Daikoku T et al. CYP1B1 expression in ovarian cancer in the laying hen Gallusdomesticus. Gynecologic Oncology 2009; 112 (1): 171- 178. doi: 10.1016/j.ygyno.2008.09.02
  • 27. Cramer DW, Welch WR. Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. Journal of the National Cancer Institute 1983; 71 (4): 717-721. PMID: 6578367
  • 28. Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. Biochimica et Biophysica Acta 2002; 1592 (3): 323-343. doi: 10.1016/S0167-4889(02)00325-7
  • 29. Li Y, Zhang H. Soybean isoflavones ameliorate ischemic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Food and Function 2017; 8 (8): 2935-2944. doi: 10.1039/c7fo00342k
  • 30. Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry 2018; 153: 105-115. doi: 10.1016/j. ejmech.2017.09.001
  • 31. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signaling in control of vascular function. Nature Reviews. Molecular Cell Biology 2006; 7 (5): 359-371. doi: 10.1038/nrm1911
  • 32. Hu Y, Li J, Qin L, Cheng W, Lai Y et al. Study in the treatment of collagen-induced arthritis in DBA/1 mice model by genistein. Current Pharmaceutical Design 2016; 22 (46): 6975-6981. doi: 10.2174/1381612822666161025150403
  • 33. Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Reports 2016; 17(5): 1344-1356. doi.org/10.1016/j.celrep.2016.09.083
  • 34. Michaelsen SR, Staberg M, Pedersen H, Jensen KE, Majewski W et al. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. NeuroOncology 2018; 20 (11): 1462-1474. doi: 10.1093/neuonc/ noy103
  • 35. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multitasking kinase. Journal of Cell Science 2003; 116 (Pt 7): 1175- 1186. doi: 10.1242/jcs.00384
  • 36. Salim T, Sjolander A, Sand-Dejmek J. Nuclear expression of glycogen synthase kinase-3beta and lack of membranous beta-catenin is correlated with poor survival in colon cancer. International Journal of Cancer 2013; 133 (4): 807-815. doi: 10.1002/ijc.28074
  • 37. Chen S, Sun KX, Feng MX, Sang XB, Liu BL et al. Role of glycogen synthase kinase-3β inhibitor AZD1080 in ovarian cancer. Drug Design, Development and Therapy 2016; 10: 1225-1232. doi: 10.2147/DDDT.S102506
  • 38. Holmes T, O’Brien TA, Knight R, Lindeman R, Shen S et al. Glycogen synthase kinase-3beta inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth. Stem Cells 2008; 26 (5): 1288-1297. doi: 10.1634/ stemcells.2007-0600
  • 39. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen, W et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108 (7): 2358-2365. doi: 10.1182/ blood-2006-02-003475
  • 40. Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C et al. Systematic discovery of in vivo phosphorylation networks. Cell 2007; 129 (7): 1415-1426. doi: 10.1016/j.cell.2007.05.052
  • 41. White MF. IRS proteins and the common path to diabetes. American Journal of Physiology. Endocrinology and Metabolism 2002; 283 (3): 413-422. doi: 10.1152/ ajpendo.00514.2001
  • 42. Sugano T, Yanagita T, Yokoo H, Satoh S, Kobayashi H et al. Enhancement of insulin-induced PI3K/Akt /GSK-3β and ERK signaling by neuronal nicotinic receptor/PKC-Α/ERK pathway: up-regulation of IRS-1/-2 mRNA and protein in adrenal chromaffin cells. Journal of Neurochemistry 2006; 98 (1): 20-33. doi: 10.1111/j.1471-4159.2006.03846.x
  • 43. Rask K, Nilsson A, Brännström M, Carlsson P, Hellberg P et al. Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3 beta. British Journal of Cancer 2003; 89 (7): 1298-1304. doi: 10.1038/ sj.bjc.6601265
APA Erten F, yenice e, Orhan C, Er B, Oner P, Defo Deeh P, Sahin K (2021). Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. , 1465 - 1471. 10.3906/sag-2007-254
Chicago Erten Fusun,yenice engin,Orhan Cemal,Er Besir,Oner Pinar,Defo Deeh Patrick Brice,Sahin Kazim Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. (2021): 1465 - 1471. 10.3906/sag-2007-254
MLA Erten Fusun,yenice engin,Orhan Cemal,Er Besir,Oner Pinar,Defo Deeh Patrick Brice,Sahin Kazim Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. , 2021, ss.1465 - 1471. 10.3906/sag-2007-254
AMA Erten F,yenice e,Orhan C,Er B,Oner P,Defo Deeh P,Sahin K Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. . 2021; 1465 - 1471. 10.3906/sag-2007-254
Vancouver Erten F,yenice e,Orhan C,Er B,Oner P,Defo Deeh P,Sahin K Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. . 2021; 1465 - 1471. 10.3906/sag-2007-254
IEEE Erten F,yenice e,Orhan C,Er B,Oner P,Defo Deeh P,Sahin K "Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer." , ss.1465 - 1471, 2021. 10.3906/sag-2007-254
ISNAD Erten, Fusun vd. "Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer". (2021), 1465-1471. https://doi.org/10.3906/sag-2007-254
APA Erten F, yenice e, Orhan C, Er B, Oner P, Defo Deeh P, Sahin K (2021). Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. Turkish Journal of Medical Sciences, 51(3), 1465 - 1471. 10.3906/sag-2007-254
Chicago Erten Fusun,yenice engin,Orhan Cemal,Er Besir,Oner Pinar,Defo Deeh Patrick Brice,Sahin Kazim Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. Turkish Journal of Medical Sciences 51, no.3 (2021): 1465 - 1471. 10.3906/sag-2007-254
MLA Erten Fusun,yenice engin,Orhan Cemal,Er Besir,Oner Pinar,Defo Deeh Patrick Brice,Sahin Kazim Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. Turkish Journal of Medical Sciences, vol.51, no.3, 2021, ss.1465 - 1471. 10.3906/sag-2007-254
AMA Erten F,yenice e,Orhan C,Er B,Oner P,Defo Deeh P,Sahin K Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. Turkish Journal of Medical Sciences. 2021; 51(3): 1465 - 1471. 10.3906/sag-2007-254
Vancouver Erten F,yenice e,Orhan C,Er B,Oner P,Defo Deeh P,Sahin K Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. Turkish Journal of Medical Sciences. 2021; 51(3): 1465 - 1471. 10.3906/sag-2007-254
IEEE Erten F,yenice e,Orhan C,Er B,Oner P,Defo Deeh P,Sahin K "Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer." Turkish Journal of Medical Sciences, 51, ss.1465 - 1471, 2021. 10.3906/sag-2007-254
ISNAD Erten, Fusun vd. "Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer". Turkish Journal of Medical Sciences 51/3 (2021), 1465-1471. https://doi.org/10.3906/sag-2007-254