Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method

Yıl: 2021 Cilt: 18 Sayı: 5 Sayfa Aralığı: 72 - 78 Metin Dili: İngilizce DOI: 10.4274/tjps.galenos.2021.95680 İndeks Tarihi: 19-01-2022

Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method

Öz:
Objectives: Erlotinib (ERL) is a tyrosine kinase inhibitor that has been used in the treatment of metastatic non-small cell lung cancer (NSCLC). However, its low aqueous solubility limits its absorption and oral bioavailability. To overcome these pharmacokinetic drawbacks, complexation of ERL can be applied. The aim of this study was to develop and characterize an oral tablet formulation containing ERL: Randomly methylated-βcyclodextrin (RAMEB-CD) inclusion complex to enhance solubility and oral bioavailability of ERL. Materials and Methods: An inclusion complex was prepared with RAMEB-CD using co-lyophilization technique. Structural characterization was performed using X-ray diffractometry and fourier-transform infrared spectroscopy. Tablet formulation of ERL: RAMEB-CD inclusion complex were prepared using direct compression technique. Tablet characteristics like hardness, diameter, thickness, friability, weight variability, disintegration and dissolution were evaluated. Flow properties of the powder were also determined. Results: Characterization studies suggested that stable complexes between ERL and RAMEB-CD were obtained with co-lyophilization method. Tablet formulation using inclusion complex of ERL and RAMEB-CD with drug dose equivalent to 25 mg was successfully prepared using direct compression technique. Physical properties of the powder mixture were studied - angle of repose (°): 34.27±1.78; flow time: 2.2±0.4; HR: 1.05±0.02; compressibility index: 14.27±1.55. Moisture content (%) was found to be 0.27±0.05. The thickness, diameter and hardness values were 3.92±0.05 mm, 11.3±0.06 mm and 81.38±2.27 N, respectively. In uniformity of weight test, the average weight was 404.57±1.6mg, with less than 5% deviation in 20 randomly selected tablets. Friability value was 0.27% and the disintegration time was found to be less than 15 min. Importantly, dissolution study showed that solubility of ERL was increased by complexation with RAMEB-CD. After 60 minutes, 99% of drug was released from the tablet formulation. Conclusion: These results demonstrate that a new tablet formulation of ERL: RAMEB-CD inclusion complex could be an alternative approach to achieve increased dissolution and oral bioavailability of ERL for NSCLC treatment.
Anahtar Kelime:

Doğrudan Basım Yöntemi Kullanılarak Randomize Metillenmişβ-siklodekstrin İnklüzyon Kompleksi İçeren Erlotinib Oral Tablet Formülasyonu Geliştirilmesi

Öz:
Amaç: Erlotinib (ERL) metastatik küçük hücreli akciğer kanserinde (NSCLC) kullanılan tirozin kinaz inhibitörüdür. Bununla birlikte, düşük suda çözünürlüğü absorpsiyonunu ve oral biyoyararlanımını sınırlamaktadır. Bu sakıncaların üstesinden gelmek için kompleksleşme yöntemi kullanılmaktadır. Çalışmanın amacı ERL’nin çözünürlüğünü ve oral biyoyararlanımını artırmak için ERL: Randomize metillenmiş β-siklodekstrin (RAMEB-CD) inklüzyon kompleksi içeren oral tablet formülasyonu geliştirilmesi ve bu formülasyonun karakterize edilmesidir. Gereç ve Yöntemler: RAMEB-CD siklodekstrin içeren inklüzyon kompleksi ko-liyofilizasyon yöntemi ile hazırlanmıştır. X-ray difraktometresi ve fourier-transform infrared spektroskopisi kullanılarak fizikokimyasal karakterizasyon yapılmıştır. Direkt basım yöntemi ile ERL: RAMEB CD siklodekstrin inklüzyon kompleksi içeren tablet formülasyonu hazırlanmıştır. Sertlik, çap, kalınlık, kırılganlık, ağırlık değişkenliği, dağılma ve dissolüsyon gibi tablet özellikleri belirlenmiştir. Tozun akış özellikleri de tayin edilmiştir. Bulgular: Karakterizasyon çalışmaları ko-liyofilizasyon tekniği ile ERL ve RAMEB-CD arasında stabil kompleks elde edildiğini göstermiştir. Buna göre, direkt basım yöntemi ile 25 mg ilaç dozuna eşdeğer olacak şekilde ERL ve RAMEB-CD inklüzyon kompleksi kullanılarak tablet formülasyonu hazırlanmıştır. Toz karışımının fiziksel özellikleri belirlenmiştir yığın açısı (°): 34,27±1,78; akış süresi: 2,2±0,4; Hausner oranı: 1,05±0,02; basılabilirlik indeksi: 14,27±1,55). Nem içeriği %0,27±0,05 bulunmuştur. Kalınlık, çap ve sertlik değerleri sırasıyla 3,92±0,05 mm, 11,3±0,06 mm ve 81,38±2,27 N olarak bulunmuştur. Ağırlık sapması testinde; ortalama tablet ağırlığı 404,57±1,6mg olup rastgele seçilen 20 tablet için sapma %5’ten küçüktür. Kırılganlık değeri %0,27’dir. Dağılma zamanı 15 dakikadan az bulunmuştur. Dissolüsyon çalışması RAMEB-CD ile kompleksleşme ile ERL’nin suda çözünürlüğünün önemli ölçüde arttığını göstermiştir. Altmış dakika sonunda ilacın %99’u salınmıştır. Sonuç: Elde edilen veriler ile ERL: RAMEB-CD inklüzyon kompleksi içeren yeni tablet formülasyonunun daha iyi çözünme ve oral biyoyararlanım elde etmek için NSCLC tedavisinde alternatif bir yaklaşım olabileceği sonucuna varılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22:77-85.
  • 2. Thomas SM, Grandis JR. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat Rev. 2004;30:255-268.
  • 3. Fan L, Hu L, Yang B, Fang X, Gao Z, Li W, Sun Y, Shen Y, Wu X, Shu Y, Gu Y, Wu X, Xu Q. Erlotinib promotes endoplasmic reticulum stressmediated injury in the intestinal epithelium. Toxicol Appl Pharmacol. 2014;278:45-52.
  • 4. Herchenhorn D, Dias FL, Viegas CM, Federico MH, Araujo CM, Small I, Bezerra M, Fontao K, Knust RE, Ferreira CG, Martins RG. Phase I/II study of erlotinib combined with cisplatin and radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2010;78:696-702.
  • 5. Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving the solubility of poorly water-soluble drugs. J Drug Deliv Sci Tech. 2017;41:68-77.
  • 6. Vimalson DC, Parimalakrishnan S, Jeganathan NS, Anbazhagan S. Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J Pharm. 2016;10:S67-S75.
  • 7. Truong DH, Tran TH, Ramasamy T, Choi JY, Lee HH, Moon C, Choi HG, Yong CS, Kim JO. Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib. AAPS PharmSciTech. 2016;17:466-473.
  • 8. Vrignaud S, Hureaux J, Wack S, Benoit JP, Saulnier P. Design, optimization and in vitro evaluation of reverse micelle-loaded lipid nanocarriers containing erlotinib hydrochloride. Int J Pharm. 2012;436:194-200.
  • 9. Devasari N, Dora CP, Singh C, Paidi SR, Kumar V, Sobhia ME, Suresh S. Inclusion complex of erlotinib with sulfobutyl ether-beta-cyclodextrin: Preparation, characterization, in silico, in vitro and in vivo evaluation. Carbohydr Polym. 2015;134:547-556.
  • 10. Kwon S, Lee W, Shin HJ, Yoon SI, Kim YT, Kim YJ, Lee K, Lee S. Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy. J Mol Struct. 2009;938:192- 197.
  • 11. Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with beta-cyclodextrin. Food Chem. 2007;101:652-658.
  • 12. Lyra MAM, Soares-Sobrinho JL, Figueiredo RCBQ, Sandes JM, Lima AAN, Tenorio RP, Fontes DAF, Santos FLA, Rolim LA, Rolim-Neto PJ. Study of benznidazole-cyclodextrin inclusion complexes, cytotoxicity and trypanocidal activity. J Incl Phenom Macrocycl Chem. 2012;73:397- 404.
  • 13. Wang DW, Ouyang CB, Liu Q, Yuan HL, Liu XH. Inclusion of quinestrol and 2,6-di-O-methyl-beta-cyclodextrin: Preparation, characterization, and inclusion mode. Carbohydr Polym. 2013;93:753-760.
  • 14. Vaidya B, Parvathaneni V, Kulkarni NS, Shukla SK, Damon JK, Sarode A, Kanabar D, Garcia JV, Mitragotri S, Muth A, Gupta V. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int J Biol Macromol. 2019;122:338-347.
  • 15. Gontijo S, Guimarães P, Viana C, Denadai A, Gomes A, Campos P, Andrade S, Sinisterra R, Cortés M. Erlotinib/hydroxypropyl-β-cyclodextrin inclusion complex: characterization and in vitro and in vivo evaluation. J Incl Phenom Macrocycl Chem. 2015;83:267-279.
  • 16. Polat HK, Bozdag Pehlivan S, Ozkul C, Calamak S, Ozturk N, Aytekin E, Firat A, Ulubayram K, Kocabeyoglu S, Irkec M, Calis S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm. 2020;585:119552.
  • 17. ANNEX I Summary of Product Characteristics. Available from: https:// www.ema.europa.eu/en/documents/product-information/tarceva-eparproduct-information_en.pdf
  • 18. Dissolution Methods. Available from: https://www.accessdata.fda.gov/ scripts/cder/dissolution/dsp_SearchResults.cfm
  • 19. Jansook P, Ogawa N, Loftsson T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535:272-284.
  • 20. Fenyvesi F, Nguyen TLP, Haimhoffer A, Rusznyak A, Vasvari G, Bacskay I, Vecsernyes M, Ignat SR, Dinescu S, Costache M, Ciceu A, Hermenean A, Varadi J. Cyclodextrin complexation improves the solubility and caco2 permeability of chrysin. Materials. 2020;13:3618.
  • 21. Parthasaradhi B, Rathnakar K, Raji R, Muralidhara D, Srinivasa T. Erlotinib hydrochloride polymorph Form A substantially free of polymorph Form B. EP2218713A1, 2007. Available from: https://patents.google.com/ patent/EP2218713A1/en
  • 22. Nicolescu C, Arama C, Monciu CM. Preparation and characterization of inclusion complexes between repaglinide and β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and randomly methylated β-cyclodextrin. Farmacia. 2010;58:78-88.
  • 23. Sbarcea L, Udrescu L, Dragan L, Trandafirescu C, Szabadai Z, Bojita M. Fosinopril-cyclodextrin inclusion complexes: phase solubility and physicochemical analysis. Pharmazie. 2011;66:584-589.
  • 24. Tănase I, Sbârcea L, Ledeți A, Vlase G, Barvinschi P, Văruţ R, Dragomirescu A, Axente C, Ledeți I. Physicochemical characterization and molecular modeling study of host-guest systems of aripiprazole and functionalized cyclodextrins. J Therm Anal Calorim. 2020;141:1027-1039.
  • 25. USP 30-NF 25 Powder Flow. 2005:643. Available from: https://www. uspnf.com/?gclid=CjwKCAjw7rWKBhAtEiwAJ3CWLJz0pJM7-h9SjpcrN DZQnGNSDABpbbTXflMyMcjKtACsWz56Guu0AxoCc0YQAvD_BwE
  • 26. Second Interim Revision Announcement: <1216> Tablet Friability. 2016:32. Available from: https://www.usp.org/sites/default/files/usp/ document/harmonization/gen-chapter/g06_pf_ira_32_2_2006.pdf
  • 27. European Pharmacopoeia. Shutdown of European Pharmacopoeia. (8th ed). Strasbourg: European Pharmacopoeia; 2014.
  • 28. Uniformity of Dosage Units Content Uniformity USP 30-NF 25. 2005;905-910. Available from: https://www.usp.org/sites/default/ files/usp/document/harmonization/gen-method/q0304_stage_6_ monograph_25_feb_2011.pdf
  • 29. Jadhav P, Petkar B, Pore Y, Kulkarni A, Burade K. Physicochemical and molecular modeling studies of cefixime-L-arginine-cyclodextrin ternary inclusion compounds. Carbohydr Polym. 2013;98:1317-1325.
  • 30. Dissolution Testing of Immediate Release SolidOral Dosage Forms; Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), U.S. Government Printing Office: Washington, DC, 1997. Last Accessed Date: 29.09.2008. Available from: http://www.fda.gov/ cder/ guidance/1713bp1.pdf
  • 31. Loftsson T, Hreinsdottir D, Masson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm. 2005;302:18-28.
  • 32. Loftsson T, Jarho P, Masson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2:335-351.
APA ERDOĞAR N (2021). Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. , 72 - 78. 10.4274/tjps.galenos.2021.95680
Chicago ERDOĞAR NAZLI Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. (2021): 72 - 78. 10.4274/tjps.galenos.2021.95680
MLA ERDOĞAR NAZLI Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. , 2021, ss.72 - 78. 10.4274/tjps.galenos.2021.95680
AMA ERDOĞAR N Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. . 2021; 72 - 78. 10.4274/tjps.galenos.2021.95680
Vancouver ERDOĞAR N Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. . 2021; 72 - 78. 10.4274/tjps.galenos.2021.95680
IEEE ERDOĞAR N "Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method." , ss.72 - 78, 2021. 10.4274/tjps.galenos.2021.95680
ISNAD ERDOĞAR, NAZLI. "Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method". (2021), 72-78. https://doi.org/10.4274/tjps.galenos.2021.95680
APA ERDOĞAR N (2021). Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. Turkish Journal of Pharmaceutical Sciences, 18(5), 72 - 78. 10.4274/tjps.galenos.2021.95680
Chicago ERDOĞAR NAZLI Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. Turkish Journal of Pharmaceutical Sciences 18, no.5 (2021): 72 - 78. 10.4274/tjps.galenos.2021.95680
MLA ERDOĞAR NAZLI Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. Turkish Journal of Pharmaceutical Sciences, vol.18, no.5, 2021, ss.72 - 78. 10.4274/tjps.galenos.2021.95680
AMA ERDOĞAR N Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. Turkish Journal of Pharmaceutical Sciences. 2021; 18(5): 72 - 78. 10.4274/tjps.galenos.2021.95680
Vancouver ERDOĞAR N Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method. Turkish Journal of Pharmaceutical Sciences. 2021; 18(5): 72 - 78. 10.4274/tjps.galenos.2021.95680
IEEE ERDOĞAR N "Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method." Turkish Journal of Pharmaceutical Sciences, 18, ss.72 - 78, 2021. 10.4274/tjps.galenos.2021.95680
ISNAD ERDOĞAR, NAZLI. "Development of Oral Tablet Formulation Containing Erlotinib: Randomly Methylated-β-cyclodextrin Inclusion Complex Using Direct Compression Method". Turkish Journal of Pharmaceutical Sciences 18/5 (2021), 72-78. https://doi.org/10.4274/tjps.galenos.2021.95680