Yıl: 2021 Cilt: 51 Sayı: 3 Sayfa Aralığı: 1500 - 1511 Metin Dili: İngilizce DOI: 10.3906/sag-2007-289 İndeks Tarihi: 20-01-2022

The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease

Öz:
Background/aim: Oxidative stress and advanced glycation end products (AGEs) formation are proposed as effective mechanisms in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). 1,25(OH)2 D3was proposed to have antioxidant, antiinflammatory and antiglycation properties. In this study, the effect of 1,25(OH)2 D3treatment on oxidative stress parameters and AGEs levels together with hepatic histopathology was investigated in high fructose (HFr) or ethanol (EtOH)-treated rats. Materials and methods: Rats were treated with fructose (30%) or ethanol (5-20%) in drinking water with and without 1,25(OH)2 D3 treatment (5 µg/kg two times a week) for 8 weeks. Insulin resistance (IR), oxidative stress parameters, AGEs, triglyceride (TG), and hydroxyproline (Hyp) levels together with histopathology were investigated in the liver. Results: 1,25(OH)2 D3decreased hepatic reactive oxygen species, lipid and protein oxidation products together with histopathological improvements in HFr- and EtOH-treated rats. 1,25(OH)2 D3 treatment was observed to decrease significantly serum and hepatic AGEs in HFr group, and hepatic AGEs in EtOH group. Conclusion: Our results clearly show that 1,25(OH)2 D3treatment may be useful in the alleviation of hepatic lesions by decreasing glycooxidant stress in both NAFLD and ALD models created by HFr- and EtOH-treated rats, respectively.Key words: Vitamin D, fructose, ethanol, oxidative stress, glycation end products
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: current and potential therapies. Life Science 2013; 92 (2): 114-118. doi: 10.1016/j.lfs.2012.11.004
  • 2. Ore A, Akinloye OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of nonalcoholic fatty liver disease. Medicina 2019; 55 (2): 26. doi: 10.3390/medicina55020026
  • 3. Takeuchi M, Takino JI, Sakasai-Sakai A, Takata T, Tsutsumi M. Toxic AGE (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD. Nutrients 2017; 9 (6): 634. doi: 10.3390/nu9060634
  • 4. Fernando DH, Forbe JM, Angus PW, Herath CB. Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products. International Journal of Molecular Science 2019; 20 (20): 5037. doi: 10.3390/ ijms20205037
  • 5. Ferramosca A, Di Giacomo M, Zara V. Antioxidant dietary approach in treatment of fatty liver: new insights and updates. World Journal of Gastroenterology 2017; 23 (23): 4146-4157. doi: 10.3748/wjg.v23.i23.4146
  • 6. Kwok RM, Torres DM, Harrison SA. Vitamin D and nonalcoholic fatty liver disease (NAFLD): is it more than just an association? Hepatology 2013; 58 (3): 1166-1174. doi: 10.1002/hep.26390
  • 7. Wang H, Chen W, Li D, Yin X, Zhang X et al. Vitamin D and chronic diseases. Aging and Disease 2017; 8 (3): 346-353. doi: 10.14336/AD.2016.1021
  • 8. Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, Namazi N, Almasi-Hashiani A et al. The effect of vitamin D supplementation on oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Pharmacological Research 2019; 139: 141-152. doi: 10.1016/j.phrs.2018.11.011
  • 9. Kheirouri S, Alizadeh M. Vitamin D and advanced glycation end products and their receptors. Pharmacological Research 2020; 158: 104879. doi: 10.1016/j.phrs.2020.104879
  • 10. Strange RC, Shipman KE, Ramachandran S. Metabolic syndrome: a review of the role of vitamin D in mediating susceptibility and outcome. World Journal of Diabetes 2015; 6 (7): 896-911. doi: 10.4239/wjd.v6.i7.896
  • 11. Eliades M, Spyrou E. Vitamin D: a new player in non-alcoholic fatty liver disease? World Journal of Gastroenterology 2015; 21 (6): 1718-1727. doi: 10.3748/wjg.v21.i6.1718
  • 12. Eliades M, Spyrou E, Agrawal N, Lazo M, Brancati FL et al. Meta-analysis: vitamin D and non-alcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics 2013; 38: 246- 254. doi: 10.1111/apt.12377
  • 13. Yin Y, Yu Z, Xia M, Luo X, Lu X et al. Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. European Journal of Clinical Investigation 2012; 42 (11): 1189-1196. doi: 10.1111/j.1365-2362.2012.02706.x
  • 14. Mostafa DK, Nasra RA, Zahran N, Ghoneim MT. Pleiotropic protective effects of vitamin D against high fat dietinduced metabolic syndrome in rats: One for all. European Journal of Pharmacology 2016; 792: 38-47. doi: 10.1016/j. ejphar.2016.10.031
  • 15. Mazzone G, Morisco C, Lembo V, D’Argenio G, D’Armiento M et al. Dietary supplementation of vitamin D prevents the development of western diet-induced metabolic, hepatic and cardiovascular abnormalities in rats. United European Gastroenterology Journal 2018; 6 (7): 1056-1064. doi: 10.1177/2050640618774140
  • 16. Nakano T, Cheng YF, Lai CY, Hsu LW, Chang YC et al. Impact of artificial sunlight therapy on the progress of non-alcoholic fatty liver disease in rats. Journal of Hepatology 2011; 55 (2): 415-425. doi: 10.1016/j.jhep.2010.11.028
  • 17. Han H, Cui M, You X, Chen M, Piao X et al. A role of 1,25(OH)2D3 supplementation in rats with nonalcoholic steatohepatitis induced by choline-deficient diet. Nutrition, Metabolism and Cardiovascular Disease 2015; 25 (6): 556-561. doi: 10.1016/j.numecd.2015.02.011
  • 18. Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology 2012; 18 (19): 2300-2308. doi: 10.3748/wjg.v18.i19.2300
  • 19. Elseweidy MM, Amin RS, Atteia HH, Ali MA. Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats. Biomedicine and Pharmacotherapy 2017; 85: 155-159. doi: 10.1016/j. biopha.2016.11.116
  • 20. Maia-Ceciliano TC, Dutra RR, Aguila MB, Mandarim-DeLacerda CA. The deficiency and the supplementation of vitamin D and liver: lessons of chronic fructose-rich diet in mice. The Journal of Steroid Biochemistry and Molecular Biology 2019; 192: 105399. doi: 10.1016/j.jsbmb.2019.105399
  • 21. Szabo G, Mandrekar P. Focus on: alcohol and the liver. Alcohol Research and Health 2010; 33 (1-2): 87-96
  • 22. Cederbaum AI. Alcohol metabolism. Clinical Liver Disease 2012; 16 (4): 667-685. doi: 10.1016/j.cld.2012.08.002
  • 23. Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K. Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metabolism and Pharmacokinetics 2011; 26 (1): 30-46. doi: 10.2133/dmpk.dmpk-10-rv-087
  • 24. Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. Journal of Hepatology 2013; 58 (2): 395-398. doi: 10.1016/j.jhep.2012.08.018
  • 25. Trepo E, Ouziel R, Pradat P, Momozawa Y, Quertinmont E, Gervy C et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. Journal of Hepatology 2013; 59 (2): 344-350. doi: 10.1016/j.jhep.2013.03.024
  • 26. Anthy R, Canivet CM, Patouraux S, Ferrari-Panaia P, Saint-Paul MC et al. Severe vitamin D deficiency may be an additional cofactor for the occurrence of alcoholic steatohepatitis. Alcoholism: Clinical and Experimental Research 2015; 39 (6): 1027-1033. doi: 10.1111/acer.12728
  • 27. Tardelli VS, Do Lago MPP, Da Silveira DX, Fidalgo TM. Vitamin D and alcohol: a review of the current literature. Psychiatry Research 2017; 248: 83-86. doi: 10.1016/j.psychres.2016.10.051
  • 28. Giriş M, Doğru-Abbasoğlu S, Soluk-Tekkeşin M, Olgaç V, Uysal M. Effect of betaine treatment on the regression of existing hepatic triglyceride accumulation and oxidative stress in rats fed on high fructose diet. General Physiology and Biophysics 2018; 37 (5): 563-570. doi: 10.4149/gpb_2018005
  • 29. Münch G, Keis R, Wessels A, Riederer P, Bahner U et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. European Journal of Clinical Chemistry and Clinical Biochemistry 1997; 35 (9): 669-677. doi: 10.1515/cclm.1997.35.9.669
  • 30. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 1957; 226 (1): 497-500.
  • 31. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine 1999; 27 (5-6): 612-616. doi: 10.1016/ s0891-5849(99)00107-0
  • 32. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods in Enzymology 1978; 52: 302-310. doi: 10.1016/s0076- 6879(78)52032-6
  • 33. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology 1994; 233: 357-363. doi: 10.1016/s0076- 6879(94)33041-7
  • 34. Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C et al. Clinica Chimica Acta 2012; 413 (9-10): 901-906. doi: 10.1016/j.cca.2012.01.038
  • 35. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’’: the FRAP assay. Analytical Biochemistry 1996; 239 (1): 70-76. doi: 10.1006/ abio.1996.0292
  • 36. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 1963; 61: 882-888.
  • 37. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 1985; 150 (1): 76-85. doi: 10.1016/0003-2697(85)90442-7
  • 38. Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. Journal of Hepatology 2007; 47 (4): 598-607. doi: 10.1016/j.jhep.2007.07.006
  • 39. Bingül I, Aydın AF, Başaran-Küçükgergin C, Doğan-Ekici I, Çoban J et al. High-fat diet plus carbon-tetrachloride induced liver fibrosis is alleviated by betaine treatment in rats. International Immunopharmacology 2016; 39: 199-207. doi: 10.1016/j.intimp.2016.07.028
  • 40. Jegatheesan P, De Bandt JP. Fructose and NAFLD: multifaceted aspects of fructose metabolism. Nutrients 2017; 9 (3): 230. doi: 10.3390/nu9030230
  • 41. Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Advances in Nutrition 2017; 8: 54-62. doi: 10.1016/j.ejphar.2020.173010
  • 42. Lin JA, Wu CH, Yen GC. Perspective of advanced glycation end products on health. Journal of Agricultural and Food Chemistry 2018; 66 (9): 2075-2070. doi: 10.1021/acs.jafc.7b05943
  • 43. Bagul PK, Middela H, Matapally S, Padiya R, Bastia T et al. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructrose-fed rats. Pharmacological Research 2012: 66 (3): 260-268. doi: 10.1016/j. phrs.2012.05.003
  • 44. Sil R, Ray D, Chakraborti AS. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model. Molecular and Cellular Biochemistry 2015; 409 (1-2): 177-189. doi: 10.1007/s11010-015-2523-y
  • 45. Li W, Lu, Y. Hepatoprotective effects of sophoricoside against fructose-induced liver injury via regulating lipid metabolism, oxidation, and inflammation in mice. Journal of Food Science 2018; 83 (2): 552-558. doi: 10.1111/1750-3841.14047
  • 46. Yang Y, Wang J, Zhang Y, Li J, Sun W. Black sesame seeds ethanol extract ameliorates hepatic lipid accumulation, oxidative stress, and insulin resistance in fructose-induced nonalcoholic fatty liver disease. Journal of Agricultural and Food Chemistry 2018; 66 (40): 10458-10469. doi: 10.1021/acs. jafc.8b04210
  • 47. Pai SA, Munshi RP, Panchal FH, Gaur IS, Juvekar AR. Chrysin ameliorates nonalcoholic fatty liver disease in rats. NaunynSchmiedeberg’s Archives of Pharmacology 2019; 392 (12): 1617-1628. doi: 10.1007/s00210-019-01705-3
  • 48. Capeillere-Blandin C, Gausson V, Descamps-Latscha B, WitkoSarsat V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta 2004; 2689 (2): 91-102. doi: 10.1016/j.bbadis.2004.02.008
  • 49. Balkan J, Kanbağlı Ö, Aykaç-Toker G, Uysal M. Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats. Biological and Pharmaceutical Bulletin 2002; 25 (9): 1231-1233. doi: 10.1248/bpb.25.1231
  • 50. Muller LG, Pase CS, Reckziegel P, Barcelos RCS, Boufleur N et al. Hepatoprotective effects of pecan nut shells on ethanolinduced liver damage. Experimental and Toxicologic Pathology 2013; 65 (1-2): 165-171. doi: 10.1016/j.etp.2011.08.002
  • 51. Prathibha P, Rejitha S, Harikrishnan R, Das SS, Abhilash PA et al. Additive effect of alpha-tocopherol and ascorbic acid in combating ethanol-induced hepatic fibrosis. Redox Report 2013; 18 (1): 36-46. doi: 10.1179/1351000212Y.0000000038
  • 52. Liu J, Wang X, Liu R, Liu Y, Zhang T et al. Oleanolic acid coadministration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulating in rats. ChemicoBiological Interaction 2014; 221: 88-98. doi: 10.1016/j. cbi.2014.07.017
  • 53. Choi RY, Woo MJ, Ham JR, Lee MK. Anti-steatotic and antiinflammatory effects of Hovenia dulcis Thunb. Extracts in chronic alcohol-fed rats. Biomed Pharmacotherapy 2017; 90: 393-401. doi: 10.1016/j.biopha.2017.03.077
  • 54. Hayashi N, George J, Takeuchi M, Fukumara A, Toshikuni N et al. Acetaldehyde-derived advanced glycation end-products promote alcoholic liver disease. PLOS One 2013; 8 (7): e70034. doi: 10.1371/journal.pone.0070034
  • 55. Hamden K, Carreau S, Jamoussi K, Miladi S, Lajmi S et al. 1α,25 dihydroxyvitamin D3: therapeutic and preventive effects against oxidative stress, hepatic, pancreatic and renal injury in alloxan-induced diabetes in rats. Journal of Nutritional Science and Vitaminology 2009; 55 (3): 215-222. doi: 10.3177/ jnsv.55.215
  • 56. Abramovitch S, Sharvit E, Weisman Y, Bentov A, Brazowski E et al. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. American Journal of Physiology Gastrointestinal and Liver Physiology 2015; 308 (2): G112-G120. doi: 10.1152/ajpgi.00132.2013
  • 57. Hu CQ, Bo QL, Chu LL, Hu YD, Fu L et al. Vitamin D deficiency aggravates hepatic oxidative stress and inflammation during chronic alcohol-induced liver injury in mice. Oxidative Medicine and Cellular Longevity 2020; 2020; 5715893. doi: 10.1155/2020/5715893
  • 58. Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Letters 1993; 326 (1): 285- 288. doi: 10.1016/0014-5793(93)81809-e
  • 59. Mokhtari Z, Hekmatdoost A, Nourian M. Antioxidant efficacy of vitamin D. Journal of Parathyroid Disease 2017; 5 (1): 11-16. 60. Iqbal S, Alam MM, Naseem I. Vitamin D prevents glycation of proteins: an in vitro study. FEBS Letters 2016; 590 (16): 2725- 2736. doi: 10.1002/1873-3468.12278
APA BINGÜL I, Aydın A, KUCUKGERGIN C, Doğan Ekici A, Dogru-Abbasoglu S, Uysal M (2021). The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. , 1500 - 1511. 10.3906/sag-2007-289
Chicago BINGÜL ILKNUR,Aydın Abdurrahman Fatih,KUCUKGERGIN CANAN,Doğan Ekici Asiye Işın,Dogru-Abbasoglu Semra,Uysal Mujdat The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. (2021): 1500 - 1511. 10.3906/sag-2007-289
MLA BINGÜL ILKNUR,Aydın Abdurrahman Fatih,KUCUKGERGIN CANAN,Doğan Ekici Asiye Işın,Dogru-Abbasoglu Semra,Uysal Mujdat The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. , 2021, ss.1500 - 1511. 10.3906/sag-2007-289
AMA BINGÜL I,Aydın A,KUCUKGERGIN C,Doğan Ekici A,Dogru-Abbasoglu S,Uysal M The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. . 2021; 1500 - 1511. 10.3906/sag-2007-289
Vancouver BINGÜL I,Aydın A,KUCUKGERGIN C,Doğan Ekici A,Dogru-Abbasoglu S,Uysal M The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. . 2021; 1500 - 1511. 10.3906/sag-2007-289
IEEE BINGÜL I,Aydın A,KUCUKGERGIN C,Doğan Ekici A,Dogru-Abbasoglu S,Uysal M "The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease." , ss.1500 - 1511, 2021. 10.3906/sag-2007-289
ISNAD BINGÜL, ILKNUR vd. "The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease". (2021), 1500-1511. https://doi.org/10.3906/sag-2007-289
APA BINGÜL I, Aydın A, KUCUKGERGIN C, Doğan Ekici A, Dogru-Abbasoglu S, Uysal M (2021). The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. Turkish Journal of Medical Sciences, 51(3), 1500 - 1511. 10.3906/sag-2007-289
Chicago BINGÜL ILKNUR,Aydın Abdurrahman Fatih,KUCUKGERGIN CANAN,Doğan Ekici Asiye Işın,Dogru-Abbasoglu Semra,Uysal Mujdat The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. Turkish Journal of Medical Sciences 51, no.3 (2021): 1500 - 1511. 10.3906/sag-2007-289
MLA BINGÜL ILKNUR,Aydın Abdurrahman Fatih,KUCUKGERGIN CANAN,Doğan Ekici Asiye Işın,Dogru-Abbasoglu Semra,Uysal Mujdat The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. Turkish Journal of Medical Sciences, vol.51, no.3, 2021, ss.1500 - 1511. 10.3906/sag-2007-289
AMA BINGÜL I,Aydın A,KUCUKGERGIN C,Doğan Ekici A,Dogru-Abbasoglu S,Uysal M The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. Turkish Journal of Medical Sciences. 2021; 51(3): 1500 - 1511. 10.3906/sag-2007-289
Vancouver BINGÜL I,Aydın A,KUCUKGERGIN C,Doğan Ekici A,Dogru-Abbasoglu S,Uysal M The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease. Turkish Journal of Medical Sciences. 2021; 51(3): 1500 - 1511. 10.3906/sag-2007-289
IEEE BINGÜL I,Aydın A,KUCUKGERGIN C,Doğan Ekici A,Dogru-Abbasoglu S,Uysal M "The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease." Turkish Journal of Medical Sciences, 51, ss.1500 - 1511, 2021. 10.3906/sag-2007-289
ISNAD BINGÜL, ILKNUR vd. "The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress,and advanced glycation end products in experimental nonalcoholicand alcoholic- fatty liver disease". Turkish Journal of Medical Sciences 51/3 (2021), 1500-1511. https://doi.org/10.3906/sag-2007-289