Yıl: 2021 Cilt: 45 Sayı: 2 Sayfa Aralığı: 29 - 34 Metin Dili: Türkçe DOI: 10.4274/tpd.galenos.2021.66375 İndeks Tarihi: 20-01-2022

Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri

Öz:
Amaç: Bu çalışmada, Leishmania major ve Leishmania infantum promastigotlarındaki gen ekspresyonlarının karşılaştırmalı analizi yapılarak, iki tür arasında gen ekspresyon profillerindeki farklılıkların tespit edilmesi amaçlanmıştır. Yöntemler: L. major (MHOM/IL/80) ve L. infantum (MHOM/MA/67/ITMAP/263) hücre hatları kullanılarak hücre kültürü oluşturulmuştur. Daha sonra, total RNA izolasyonu ve cDNA sentezi gerçekleştirilerek; revers transkriptaz polimeraz zincir reaksiyonu ile metabolik yolaklarda ve nükleik asit sentezinde rol oynayan ve her iki türde ortak olan 30 genin ekspresyon seviyelerindeki kat değişimi hesaplanmıştır. LeishDB ve KEGG veri tabanları kullanılarak genlerin fonksiyonel işlevleri belirlenmiştir. Bulgular: Bu çalışmada, L. major ile L. infantum promastigotlarında ortak olarak eksprese edilen ve protein kodlayan 30 farklı gen profili değerlendirilmiş ve iki tür arasında anlamlı farklılık saptanmıştır (p<0,001). İki türde ortak olan bu genlerin %29’unun ekspresyon düzeylerinde anlamlı kat farkı tespit edilmiştir. Dokuz genin L. major’de ekspresyonu, L. infantum’a göre belirgin derece yüksek olarak tespit edilmiştir (kat değişimi >1). Bu genler; phosphoglycan beta 1,3 galactosyltransferase-like, lathosterol oxidase-like, fatty acid elongase, 3-oxo-5 alpha-steroid 4-dehydrogenase, calpain-like cysteine peptidase, acetyl-coA synthetase, 3’-nucleotidase/nuclease, 3’-nucleotidase/nuclease precursor ve 3-ketoacyl-coA thiolase-like olarak belirlenmiştir. İki türde ortak olan genlerin karşılık geldiği proteinlerin fonksiyonları veri tabanlarında ayrıntılı olarak incelendiğinde ise, bu genlerin parazitin lipit, protein ve karbonhidrat mekanizmalarında, nükleik asit ve metabolizma fonksiyonlarında rol oynadığı saptanmıştır. Sonuç: L. major ile L. infantum türlerinde ortak olarak bulunan genlerin ekspresyon profillerindeki değişiklikler, parazit türleri arasında virülans, patogenez, klinik ve tedavi farklılıklarına neden olabilir. Ayrıca parazite karşı aşı ve ilaç çalışmaları için türlere özgü spesifik veya ortak hedeflerin seçilmesinde gen profillerinin değerlendirilmesi önem arz etmektedir.
Anahtar Kelime:

Comparative Gene Expression Profiles of Leishmania major and Leishmania infantum Promastigotes

Öz:
Objective: This study aimed to determine the differences between the gene expression profiles of Leismania major and Leishmania infantum promastigotes through comparative analysis of gene expressions. Methods: Cell culture of L. major (MHOM/IL/80) and L. infantum (MHOM/MA/67/ITMAP/263) cell lines was performed. Afterwards, total RNA isolation and cDNA synthesis were performed and fold changes in the expression levels of 30 genes that play a role in metabolic pathways and nucleic acid synthesis and co-expressed in two species were evaluated by reverse transcriptase polymerase chain reaction. Functions of genes were determined using LeishDB and KEGG databases. Results: In this study, profiles of protein-coding 30 genes expressed in L. major and L. infantum promastigotes were evaluated and significant differences were found between the two species (p<0.001). There was a significant fold change in the expression levels of 29% of genes common in the two species. The expression levels of nine genes in L. major were found to be markedly higher than those of L. infantum (fold change >1). These genes include phosphoglycan beta 1.3 galactosyltransferase-like, lathosterol oxidase-like, fatty acid elongase, 3-oxo-5 alpha-steroid 4-dehydrogenase, calpain-like cysteine peptidase, acetyl-coA synthetase, 3’-nucleotidase/nuclease, 3’-nucleotidase/nuclease precursor and 3-ketoacyl-coA thiolase-like. When the functions of the proteins that correspond to the genes common in the two species were examined in detail using the databases, it was determined that these genes play role in lipid, protein, carbohydrate and nucleic acid metabolic functions of the parasite. Conclusion: Alterations in the expression profiles of genes common to L. major and L. infantum species may cause differences in the virulence, pathogenesis, clinical features and treatment modality between these parasite species. In addition, evaluation of gene profiles is important in the selection of speciesspecific or common targets for vaccine and drug studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res 2017; 6: 750.
  • 2. World Health Organization. WHO Expert Committee on the Control of the Leishmaniases & World Health Organization. Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases; 2010 22-26 March; Geneva.
  • 3. de Menezes JP, Guedes CE, Petersen AL, Fraga DB, Veras PS. Advances in Development of New Treatment for Leishmaniasis. Biomed Res Int 2015; 2015: 815023.
  • 4. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11: 0006052.
  • 5. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005; 366: 1561-77.
  • 6. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309: 436-42.
  • 7. Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007; 156: 93- 101.
  • 8. Real F, Vidal RO, Carazzolle MF, Mondego JM, Costa GG, Herai RH, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res 2013; 20: 567-81.
  • 9. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 2007; 39: 839-47.
  • 10. Proteomes-Leishmania major, Leishmania infantum. Uniprot. https://www. uniprot.org/ proteomes/UP000000542 (cited 30 January 2021). Available from: URL: https://www.uniprot.org/proteomes/ UP000008153.
  • 11. Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, et al. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 2008; 9: 255.
  • 12. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013; 3: 71-85.
  • 13. Bee A, Culley FJ, Alkhalife IS, Bodman-Smith KB, Raynes JG, Bates PA. Transformation of Leishmania mexicana metacyclic promastigotes to amastigote-like forms mediated by binding of human C-reactive protein. Parasitology 2001; 122: 521-9.
  • 14. Avilán L, Gualdrón-López M, Quiñones W, González-González L, Hannaert V, Michels PA, et al. Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res 2011; 2011: 932549.
  • 15. Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, et al. Characterization of glycolytic enzymes--rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. PLoS One 2014; 9: 86073.
  • 16. Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol 2011; 179: 91-9.
  • 17. Kulshrestha A, Sharma V, Singh R, Salotra P. Comparative transcript expression analysis of miltefosine-sensitive and miltefosine-resistant Leishmania donovani. Parasitol Res 2014; 113: 1171-84.
  • 18. Soumya N, Panara MN, Neerupudi KB, Singh S. Functional analysis of an AMP forming acetyl CoA synthetase from Leishmania donovani by gene overexpression and targeted gene disruption approaches. Parasitol Int 2017; 66: 992-1002.
  • 19. Hu G, Cheng PY, Sham A, Perfect JR, Kronstad JW. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 2008; 69: 1456-75.
  • 20. Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45: 295-333.
  • 21. Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 2010; 170: 55-64.
  • 22. Ghosh M, Roy K, Das Mukherjee D, Chakrabarti G, Roy Choudhury K, Roy S. Leishmania donovani infection enhances lateral mobility of macrophage membrane protein which is reversed by liposomal cholesterol. PLoS Negl Trop Dis 2014; 8: 3367.
  • 23. Azevedo LG, de Queiroz ATL, Barral A, Santos LA, Ramos PIP. Proteins involved in the biosynthesis of lipophosphoglycan in Leishmania: a comparative genomic and evolutionary analysis. Parasit Vectors 2020; 13: 44.
  • 24. Ning Y, Frankfater C, Hsu FF, Soares RP, Cardoso CA, Nogueira PM, et al. Lathosterol Oxidase (Sterol C-5 Desaturase) Deletion Confers Resistance to Amphotericin B and Sensitivity to Acidic Stress in Leishmania major. mSphere 2020; 5: e00380-20.
  • 25. Zakharova GS, Poloznikov AA, Astakhova LA, Raigorodskaya MP, Khesina ZB, Fomicheva KA, et al. The effect of ELOVL6 fatty acid elongase inhibition on the expression of genes associated with the metastasis of breast cancer. Russ Chem Bull 2018; 67: 2307-15.
  • 26. Mehendale HM, Limaye PB. Calpain: a death protein that mediates progression of liver injury. Trends Pharmacol Sci 2005; 26: 232-6.
  • 27. Battaglia F, Trinchese F, Liu S, Walter S, Nixon RA, Arancio O. Calpain inhibitors, a treatment for Alzheimer‘s disease: position paper. J Mol Neurosci 2003; 20: 357-62.
  • 28. d‘Avila-Levy CM, Marinho FA, Santos LO, Martins JL, Santos AL, Branquinha MH. Antileishmanial activity of MDL 28170, a potent calpain inhibitor. Int J Antimicrob Agents 2006; 28: 138-42.
  • 29. Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74: 217-52.
  • 30. Freitas-Mesquita AL, Meyer-Fernandes JR. 3‘nucleotidase/nuclease in protozoan parasites: Molecular and biochemical properties and physiological roles. Exp Parasitol 2017; 179: 1-6.
APA ulusan ö, Sadykova A, Caner A (2021). Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. , 29 - 34. 10.4274/tpd.galenos.2021.66375
Chicago ulusan özlem,Sadykova Aygul,Caner Ayse Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. (2021): 29 - 34. 10.4274/tpd.galenos.2021.66375
MLA ulusan özlem,Sadykova Aygul,Caner Ayse Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. , 2021, ss.29 - 34. 10.4274/tpd.galenos.2021.66375
AMA ulusan ö,Sadykova A,Caner A Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. . 2021; 29 - 34. 10.4274/tpd.galenos.2021.66375
Vancouver ulusan ö,Sadykova A,Caner A Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. . 2021; 29 - 34. 10.4274/tpd.galenos.2021.66375
IEEE ulusan ö,Sadykova A,Caner A "Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri." , ss.29 - 34, 2021. 10.4274/tpd.galenos.2021.66375
ISNAD ulusan, özlem vd. "Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri". (2021), 29-34. https://doi.org/10.4274/tpd.galenos.2021.66375
APA ulusan ö, Sadykova A, Caner A (2021). Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. Türkiye Parazitoloji Dergisi, 45(2), 29 - 34. 10.4274/tpd.galenos.2021.66375
Chicago ulusan özlem,Sadykova Aygul,Caner Ayse Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. Türkiye Parazitoloji Dergisi 45, no.2 (2021): 29 - 34. 10.4274/tpd.galenos.2021.66375
MLA ulusan özlem,Sadykova Aygul,Caner Ayse Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. Türkiye Parazitoloji Dergisi, vol.45, no.2, 2021, ss.29 - 34. 10.4274/tpd.galenos.2021.66375
AMA ulusan ö,Sadykova A,Caner A Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. Türkiye Parazitoloji Dergisi. 2021; 45(2): 29 - 34. 10.4274/tpd.galenos.2021.66375
Vancouver ulusan ö,Sadykova A,Caner A Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri. Türkiye Parazitoloji Dergisi. 2021; 45(2): 29 - 34. 10.4274/tpd.galenos.2021.66375
IEEE ulusan ö,Sadykova A,Caner A "Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri." Türkiye Parazitoloji Dergisi, 45, ss.29 - 34, 2021. 10.4274/tpd.galenos.2021.66375
ISNAD ulusan, özlem vd. "Leishmania major ve Leishmania infantum Promastigot Formlarının Karşılaştırmalı Gen Ekspresyon Profilleri". Türkiye Parazitoloji Dergisi 45/2 (2021), 29-34. https://doi.org/10.4274/tpd.galenos.2021.66375