Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics

Yıl: 2021 Cilt: 71 Sayı: 3 Sayfa Aralığı: 196 - 209 Metin Dili: İngilizce DOI: 10.5152/forestist.2020.202046 İndeks Tarihi: 20-01-2022

Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics

Öz:
Planners and urban managers design green spaces according to established standards, aspiring to create green spaces within and around the built environment. However, when building density is extremely high, it is difficult to design large, accessible green spaces. Urban green spaces are even more necessary when built density increases, and it is important to maintain urban vegetation—especially trees—as a major and integral part of the cities. Therefore, examining the distribution of urban vegetation is a tool for policymakers and community groups seeking to simultaneously moderate urban heat-island effects, and mitigate the effects of greenhouse gas emissions. The purpose of this study was to compare three different urban vegetation indices in a university campus for quantifying spatial relationships between green and gray infrastructure. Light Detection and Ranging (LiDAR) data were used to assess the distribution of urban vegetation. The indices varied significantly among various buildings according to their use categories (e.g., academic, administrative, etc.). These differences could be used to estimate the provision of ecosystem services for the various use categories and to evaluate trade-offs. For example, higher tree densities should provide greater rates of carbon sequestration and storage, as well as water retention and flood mitigation. Conversely, aesthetic and security considerations might favor lower vegetation density to preserve sight lines and vistas. The tools employed in this study have potential for use at greater scales, including entire cities.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alonzo, M., Bookhagen, B., Roberts, D. A. (2014). Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment, 148, 70-83. [Crossref]
  • Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., Sanchez, A. (2019). Assessing the co-benefits of green-blue-grey infrastructure for sustainable urban flood risk management. Journal of Environmental Management, 239, 244-254. [Crossref]
  • Anguelovski, I., Irazábal Zurita, C., Connolly, J.J. (2019). Grabbed urban landscapes: Socio spatial tensions in green infrastructure planning in Medellín. International Journal of Urban and Regional Research, 43, 133-156. [Crossref]
  • Apparicio, P., Séguin, A. M., Dubé, J. (2016). Spatial distribution of vegetation in and around city blocks on the Island of Montreal: A double environmental inequity? Applied Geography, 76, 128-136. [Crossref]
  • Baró, F., Calderón-Argelich, A., Langemeyer, J., Connolly, J.J. (2019). Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environmental Science and Policy, 102, 54-64. [Crossref]
  • Barron, S., Nitoslawski, S., Wolf, K.L., Woo, A., Desautels, E., Sheppard, S. R. (2019). Greening blocks: A conceptual typology of practical design interventions to integrate health and climate resilience co-benefits. International Journal of Environmental Research and Public Health, 16, 4241. [Crossref]
  • Benedict, M. A., McMahon, E. T. (2002). Green infrastructure: Smart conservation for the 21st century. Renewable Resources Journal, 20, 12-17.
  • Benedict, M. A., McMahon, E. T. (2012). Green infrastructure: Linking landscapes and communities. Island Press, Washington.
  • Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L., Hopton, M. E. (2017). The role of trees in urban stormwater management. Landscape and Urban Planning, 162, 167-177. [Crossref]
  • Casalegno, S., Anderson, K., Cox, D. T., Hancock, S., Gaston, K. J. (2017). Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Scientific Reports, 7, 45571. [Crossref]
  • Caynes, R. J., Mitchell, M. G., Wu, D. S., Johansen, K., Rhodes, J. R. (2016). Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space. Urban Ecosystems, 19, 1749-1765. [Crossref]
  • Chen, J. K., Jin, S. G., Du, P. J. (2020). Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects. International Journal of Applied Earth Observation and Geoinformation, 89, 11. [Crossref]
  • Chen, Z., Xu, B., Devereux, B. (2014). Urban landscape pattern analysis based on 3D landscape models. Applied Geography, 55, 82-91. [Crossref]
  • Conway, T. M., Bourne, K. S. (2013). A comparison of neighborhood characteristics related to canopy cover, stem density and species richness in an urban forest. Landscape and Urban Planning, 113, 10- 18. [Crossref]
  • Coutts, C., Hahn, M. (2015). Green infrastructure, ecosystem services, and human health. International Journal of Environmental Research and Public Health, 12, 9768-9798. [Crossref]
  • Cruz-Sandoval, M., Ortego, M. I., Roca, E. (2020). Tree ecosystem services, for everyone? A compositional analysis approach to assess the distribution of urban trees as an indicator of environmental justice. Sustainability, 12, 21. [Crossref]
  • Dalponte, M., Coomes, D. A. (2016). Tree centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution, 7, 1236-1245. [Crossref]
  • De la Sota, C., Ruffato-Ferreira, V. J., Ruiz-García, L., Alvarez, S. (2019). Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban Forestry and Urban Greening, 40, 145-151. [Crossref]
  • Degerickx, J., Hermy, M., Somers, B. (2020). Mapping functional urban green types using high resolution remote sensing data. Sustainability, 12, 35. [Crossref]
  • Depietri, Y., McPhearson, T. (2017). Integrating the grey, green, and blue in cities: naturebased solutions for climate change adaptation and risk reduction. In: Kabisch, N., Korn, H., Stadler, J., Bonn, A. (Eds.), Nature-based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice, Springer International Publishing, Cham, pp. 91-109. [Crossref]
  • Ferguson, M., Roberts, H. E., McEachan, R. R. C., Dallimer, M. (2018). Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landscape and Urban Planning, 175, 136-148. [Crossref]
  • Findler, F., Schönherr, N., Lozano, R., Reider, D., Martinuzzi, A. (2019). The impacts of higher education institutions on sustainable development. International Journal of Sustainability in Higher Education, 20, 23-38. [Crossref]
  • Foster, J., Lowe, A., Winkelman, S. (2011). The value of green infrastructure for urban climate adaptation. Center for Clean Air Policy, 750, 1-52.
  • Guo, T., Morgenroth, J., Conway, T., Xu, C. (2019). City-wide canopy cover decline due to residential property redevelopment in Christchurch, New Zealand. Science of The Total Environment, 681, 202- 210. [Crossref]
  • Haaland, C., van Den Bosch, C. K. (2015). Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban Forestry and Urban Greening, 14, 760-771. [Crossref]
  • Hall, F. G., Bergen, K., Blair, J. B., Dubayah, R., Houghton, R., Hurtt, G., Kellndorfer, J., Lefsky, M., Ranson, J., Saatch, S., Shugart, H.H. (2011). Characterizing 3D vegetation structure from space: Mission requirements. Remote Sensing of Environment, 115, 2753-2775. [Crossref]
  • Heyman, E. (2010). Clearance of understory in urban woodlands: assessing impact on bird abundance and diversity. Forest Ecology and Management, 260, 125-131. [Crossref]
  • Hoang, L., Fenner, R. A. (2016). System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water Journal, 13, 739-758. [Crossref]
  • Hofierka, J., Gallay, M., Onacillova, K., Hofierka, J. (2020). Physically-based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data. Urban Climate, 31, 16. [Crossref]
  • Isaifan, R. J., Baldauf, R. W. (2020). Estimating economic and environmental benefits of urban trees in desert regions. Frontiers in Ecology and Evolution, 8, 14. [Crossref]
  • Jenkins, J. C., Chojnacky, D. C., Heath, L. S., Birdsey, R. A. (2004). Comprehensive Database of Diameter-based Biomass Regressions for North American Tree Species. US Department of Agriculture Forest Service, Northeastern Research Station, Newtown Square. [Crossref]
  • Kambo, A., Drogemuller, R. Yarlagadda, P. (2019). Assessing Biophilic Design Elements for ecosystem service attributes: A subtropical Australian case. Ecosystem Services, 39, 9. [Crossref]
  • Kashani, A. G., Olsen, M. J., Parrish, C. E., Wilson, N. (2015). A review of LIDAR radiometric processing: From Ad Hoc intensity correction to rigorous radiometric calibration. Sensors, 15, 28099-28128. [Crossref]
  • Kelly, M., Su, Y., Di Tommaso, S., Fry, D. L., Collins, B. M., Stephens, S. L., Guo, Q. (2017). Impact of error in LiDAR-derived canopy height and canopy base height on modeled wildfire behavior in the Sierra Nevada, California, USA. Remote Sensing, 10, 10. [Crossref]
  • Kimball, L. L., Wiseman, P. E., Day, S. D., Munsell, J. F. (2014). Use of urban tree canopy assessments by localities in the Chesapeake Bay Watershed. Cities and the Environment 7, 9.
  • Ko, Y. (2018). Trees and vegetation for residential energy conservation: A critical review for evidence-based urban greening in North America. Urban Forestry and Urban Greening, 34, 318-335. [Crossref]
  • Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P., Wang, L. Z. (2018). Where the people are: Current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 US Cities. Landscape and Urban Planning, 177, 227-240. [Crossref]
  • Lambert, M. C., Ung, C. H., Raulier, F. (2005). Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35, 1996-2018. [Crossref]
  • Lee, J., Cai, X., Lellmann, J., Dalponte, M., Malhi, Y., Butt, N., Schönlieb, C., Coomes, D. A. (2016). Individual tree species classification from airborne multisensor imagery using robust PCA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 2554-2567. [Crossref]
  • Li, D., Sullivan, W. C. (2016). Impact of views to school landscapes on recovery from stress and mental fatigue. Landscape and Urban Planning, 148, 149-158. [Crossref]
  • Li, F., Liu, X., Zhang, X., Zhao, D., Liu, H., Zhou, C., Wang, R. (2017). Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. Journal of Cleaner Production, 163, S12-S18. [Crossref]
  • Lin, J. (2020). Developing a composite indicator to prioritize tree planting and protection locations. Science of the Total Environment, 717, 12. [Crossref]
  • Liquete, C., Kleeschulte, S., Dige, G., Maes, J., Grizzetti, B., Olah, B., Zulian, G. (2015). Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environmental Science and Policy, 54, 268-280. [Crossref]
  • Liu, L., Coops, N. C., Aven, N. W., Pang, Y. (2017). Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 200, 170- 182. [Crossref]
  • Liu, L., Jensen, M. B. (2018). Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities, 74, 126-133. [Crossref]
  • Manning, C. D., Raghavan, P., Schutze, H. (2008). Introduction to information retrieval. Cambridge University Press, Cambridge. [Crossref]
  • Marklund, L. G., Schoene, Dieter, (2006). Global assessment of growing stock, biomass and carbon stock. Forest Resources Assessment Programme Working paper 106.
  • Marklund, S. (1988). Welfare state policies in the tripolar class model of Scandinavia. Politics and Society, 16, 469-485. [Crossref]
  • McDonald, R. I., Kroeger, T., Zhang, P., Hamel, P. (2020). The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems, 23, 137-150. [Crossref]
  • Metro Vancouver, (2018). LiDAR 2018. https://opendata.vancouver. ca/explore/dataset/lidar-2018/information/ (Accessed: 10 February 2020).
  • Moussa, S., Kyereh, B., Tougiani, A., Kuyah, S., Saadou, M. (2019). West African Sahelian cities as source of carbon stocks: Evidence from Niger. Sustainable Cities and Society, 50, 7. [Crossref]
  • Mueller, W., Steinle, S., Parkka, J., Parmes, E., Liedes, H., Kuijpers, E., Pronk, A., Sarigiannis, D., Karakitsios, S., Chapizanis, D., Maggos, T., Stamatelopoulou, A., Wilkinson, P., Milner, J., Vardoulakis, S., Loh, M. (2020). Urban greenspace and the indoor environment: Pathways to health via indoor particulate matter, noise, and road noise annoyance. Environmental Research, 180, 13. [Crossref]
  • Næsset, E., Gobakken, T. (2008). Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 112: 3079-3090. [Crossref]
  • Nesbitt, L., Meitner, M. J., Sheppard, S. R., Girling, C. (2018). The dimensions of urban green equity: A framework for analysis. Urban Forestry and Urban Greening, 34, 240-248. [Crossref]
  • Nielsen, A. B., Östberg, J., Delshammar, T. (2014). Review of urban tree inventory methods used to collect data at single-tree level. Arboriculture and Urban Forestry, 40, 96-111.
  • Nowak, D. (2016). Urban forests. In: Robertson, G., Mason, A. (Eds.), Assessing the sustainability of agricultural and urban forests in the United States, USDA Forest Service FS-1067, Washington, DC, pp. 37-52.
  • Östberg, J., Wiström, B., Randrup, T. B. (2018). The state and use of municipal tree inventories in Swedish municipalities: Results from a national survey. Urban Ecosystems, 21, 467-477. [Crossref]
  • Parmehr, E. G., Amati, M., Taylor, E. J., Livesley, S. J. (2016). Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban Forestry and Urban Greening, 20, 160-171. [Crossref]
  • Pesola, L., Cheng, X., Sanesi, G., Colangelo, G., Elia, M., Lafortezza, R. (2017). Linking above-ground biomass and biodiversity to stand development in urban forest areas: A case study in Northern Italy. Landscape and Urban Planning, 157, 90-97. [Crossref]
  • Plowright, A. (2015). Extracting trees in an urban environment using airborne LiDAR. GSS cIRcle Open Scholar Award (UBCV Non-Thesis Graduate Work).
  • R Core Team, (2020). R: A language and environment for statistical computing, 2020. https://www.R-project.org. (Accessed: 02 January 2020).
  • Roeland, S., Moretti, M., Amorim, J. H., Branquinho, C., Fares, S., Morelli, F., Niinemets, Paoletti, E., Pinho, P., Sgrigna, G., Stojanovski, V., Tiwary, A., Sicard, P., Calfapietra, C. (2019). Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. Journal of Forestry Research, 30, 1981-1996. [Crossref]
  • Roussel, J. R., Auty, D., De Boissieu, F., Meador, A. S. (2020). lidR: Airborne LiDAR data manipulation and visualization for forestry applications. R package version 3.0.3. https://github.com/Jean-Romain/ lidR (Accessed: 15 March 2020).
  • Roy, S., Byrne, J., Pickering, C. (2012). A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry and Urban Greening, 11, 351-363. [Crossref]
  • Schreyer, J., Tigges, J., Lakes, T., Churkina, G. (2014). Using airborne LiDAR and QuickBird data for modelling urban tree carbon storage and its distribution-A case study of Berlin. Remote Sensing, 6: 10636-10655. [Crossref]
  • Shen, G., Wang, Z., Liu, C., Han, Y. (2020). Mapping aboveground biomass and carbon in Shanghai’s urban forest using Landsat ETM+ and inventory data. Urban Forestry and Urban Greening, 126655. [Crossref]
  • Snäll, T., Lehtomäki, J., Arponen, A., Elith, J., Moilanen, A. (2016). Green infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environmental management, 57, 251-256. [Crossref]
  • Speak, A., Escobedo, F. J., Russo, A., Zerbe, S. (2020). Total urban tree carbon storage and waste management emissions estimated using a combination of LiDAR, field measurements and an endof-life wood approach. Journal of Cleaner Production, 256, 120420. [Crossref]
  • Speak, A., Montagnani, L., Wellstein, C., Zerbe, S. (2020). The influence of tree traits on urban ground surface shade cooling. Landscape and Urban Planning, 197, 11. [Crossref]
  • Sun, Y., Xie, S., Zhao, S. (2019). Valuing urban green spaces in mitigating climate change: A city wide estimate of aboveground carbon stored in urban green spaces of China’s capital. Global Change Biology, 25, 1717-1732. [Crossref]
  • Terkenli, T. S., Bell, S., Živojinović, I., Tomićević-Dubljević, J., Panagopoulos, T., Straupe, I., Toskovic, O., Kristianova, K., Straigyte, L., O’Brien, L. (2017). Recreational use of urban green infrastructure: the tourist’s perspective. In: Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Krajter Ostoić, S., Sanesi, G., Alonso del Amo, R. (Eds.), The urban forest: cultivating green infrastructure for people and the environment, Springer International Publishing, Cham, Switzerland, pp. 191-216. [Crossref]
  • Teslenko, T. (2019). Engaging students and campus community in sustainability activities in a major Canadian University. In: Filho, W. L., Bardi, U. (Eds.), Sustainability on University Campuses: Learning, Skills Building and Best Practices, Springer International Publishing, Cham, Switzerland, pp. 3-20. [Crossref]
  • Threlfall, C. G., Ossola, A., Hahs, A. K., Williams, N. S., Wilson, L., Livesley, S.J. (2016). Variation in vegetation structure and composition across urban green space types. Frontiers in Ecology and Evolution, 4, 66. [Crossref]
  • Tompalski, P., Wezyk, P. (2012). LiDAR and VHRS data for assessing living quality in cities-an approach based on 3D spatial indices. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B6. [Crossref]
  • Trlica, A., Hutyra, L. R., Morreale, L. L., Smith, I. A., Reinmann, A. B. (2020). Current and future biomass carbon uptake in Boston’s urban forest. Science of the Total Environment, 709, 136196. [Crossref]
  • Venter, Z. S., Krog, N. H., Barton, D. N. (2020). Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Science of the Total Environment, 709, 10. [Crossref]
  • Wang, J., Zhou, W., Wang, J., Qian, Y. (2019). From quantity to quality: enhanced understanding of the changes in urban greenspace. Landscape Ecology, 34, 1145-1160. [Crossref]
  • Wang, J., Zhou, W., Wang, J., Yu, W. (2020). Spatial distribution of urban greenspace in response to urban development from a multi-scale perspective. Environmental Research Letters, 15, 064031. [Crossref]
  • Wang, R., Zhao, J., Meitner, M. J. (2017). Urban woodland understory characteristics in relation to aesthetic and recreational preference. Urban Forestry and Urban Greening, 24, 55-61. [Crossref]
  • Wilkes, P., Disney, M., Vicari, M. B., Calders, K., Burt, A. (2018). Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance and Management, 13, 10. [Crossref]
  • Wood, E. M., Esaian, S. (2020). The importance of street trees to urban avifauna. Ecological Applications. 27 April 2020 (preprint). [Crossref]
  • Wrozynski, R., Pyszny, K., Sojka, M. (2020). Quantitative landscape assessment using LiDAR and rendered 360 degrees panoramic images. Remote Sensing, 12, 19. [Crossref]
  • Xu, C., Dong, L., Yu, C., Zhang, Y. J., Cheng, B. D. (2020). Can forest city construction affect urban air quality? The evidence from the Beijing-Tianjin-Hebei urban agglomeration of China. Journal of Cleaner Production, 264, 13. [Crossref]
  • Yan, J., Zhou, W., Han, L., Qian, Y. (2018). Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban Forestry and Urban Greening, 31, 230-240. [Crossref]
  • Yigitcanlar, T., Kamruzzaman, M., Teimouri, R., Degirmenci, K., Alanjagh, F.A. (2020). Association between park visits and mental health in a developing country context: The case of Tabriz, Iran. Landscape and Urban Planning, 199, 9. [Crossref]
  • Zhu, X., Liu, J., Skidmore, A. K., Premier, J., Heurich, M. (2020). A voxel matching method for effective leaf area index estimation in temperate deciduous forests from leaf-on and leaf-off airborne LiDAR data. Remote Sensing of Environment, 240, 14. [Crossref]
  • Zhu, X., Skidmore, A. K., Darvishzadeh, R., Niemann, K. O., Liu, J., Shi, Y. F., Wang, T. J. (2018). Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest. International Journal of Applied Earth Observation and Geoinformation, 64, 43- 50. [Crossref]
  • Ziter, C. D., Pedersen, E. J., Kucharik, C. J.,Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116, 7575- 7580. [Crossref]
APA Gülçin D (2021). Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. , 196 - 209. 10.5152/forestist.2020.202046
Chicago Gülçin Derya Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. (2021): 196 - 209. 10.5152/forestist.2020.202046
MLA Gülçin Derya Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. , 2021, ss.196 - 209. 10.5152/forestist.2020.202046
AMA Gülçin D Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. . 2021; 196 - 209. 10.5152/forestist.2020.202046
Vancouver Gülçin D Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. . 2021; 196 - 209. 10.5152/forestist.2020.202046
IEEE Gülçin D "Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics." , ss.196 - 209, 2021. 10.5152/forestist.2020.202046
ISNAD Gülçin, Derya. "Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics". (2021), 196-209. https://doi.org/10.5152/forestist.2020.202046
APA Gülçin D (2021). Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. FORESTIST, 71(3), 196 - 209. 10.5152/forestist.2020.202046
Chicago Gülçin Derya Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. FORESTIST 71, no.3 (2021): 196 - 209. 10.5152/forestist.2020.202046
MLA Gülçin Derya Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. FORESTIST, vol.71, no.3, 2021, ss.196 - 209. 10.5152/forestist.2020.202046
AMA Gülçin D Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. FORESTIST. 2021; 71(3): 196 - 209. 10.5152/forestist.2020.202046
Vancouver Gülçin D Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics. FORESTIST. 2021; 71(3): 196 - 209. 10.5152/forestist.2020.202046
IEEE Gülçin D "Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics." FORESTIST, 71, ss.196 - 209, 2021. 10.5152/forestist.2020.202046
ISNAD Gülçin, Derya. "Spatial Distribution of Urban Vegetation: A Case Study of a Canadian University Campus Using LiDAR-Based Metrics". FORESTIST 71/3 (2021), 196-209. https://doi.org/10.5152/forestist.2020.202046