Yıl: 2021 Cilt: 49 Sayı: 4 Sayfa Aralığı: 355 - 365 Metin Dili: İngilizce DOI: 10.15671/hjbc.798021 İndeks Tarihi: 21-01-2022

Development of Iridium Based Fluorimetric Method for Determination of Cysteine

Öz:
Cysteine (Cys) and homocysteine (Hcy) amino acids that are containing thiol groups play many important roles in bi - ological systems. The plasma level of Hcy is known to be an indicator of some disorders such as cardiovascular and Alzheimer’s disease. Cys deficiency in plasma is associated with liver damage, muscle and fat loss, skin lesions, slowed growth, etc. In this study, iridium-based complexes were chosen for developing a fluorescent-based method for the deter - mination of Cys levels due to their high photoluminescence efficiency. For this aim, the iridium (III) complex was synthesized then, this complex interacted with Cys solutions. It was found that, as the concentration of Cys interacting with the iridium complex, the fluorescence intensity increased. Based on these data, it was thought that the synthesized iridium complex could be used in the fluorimetric determination of Cys level in serum samples.
Anahtar Kelime:

Sistein Tayini için İridyum Tabanlı Fluorimetrik Metot Geliştirilmesi

Öz:
iyol grupları içeren aminoasitler olarak Sistein (Cys) ve homosistein (Hcy) biyolojik sistemlerde birçok önemli rol oynamak- tadır. HCy’nin plazma seviyesinin, kardiyovasküler ve Alzheimer gibi bazı hastalıkların bir göstergesi olduğu bilinmektedir. Plazmadaki Cys eksikliği karaciğer hasarı, kas ve yağ kaybı, cilt lezyonları, yavaş büyüme vb. Gibi durumlarla ilişkilidir. Bu çalışmada, Cys seviyelerinin belirlenmesi için floresan tabanlı bir metot geliştirilmek üzere yüksek fotolüminesans etkinlik gösteren iridium (III) kompleksleri seçilmiştir. Daha sonra sentezlenen kompleks, Cys çözeltileriyle etkileştirilmiştir. İridyum kompleksiyle etkileşen Cys derişimi arttıkça çözeltinin floresans şiddetinin de arttığı bulunmuştur. Buradan yola çıkarak, sentezlenen iridyum kompleksinin, serum örneklerinde Cys seviyesinin florimetrik tayininde kullanılabileceği düşünülmek - tedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Y. Sun, M. X. Yu, S. Liang, Y. J. Zhang, C. G. Li, T. T. Mou, W. J. Yang, X. Z. Zhang, B. Li and F. Y. Li, Fluorine-18 labeled rare- earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymoh node, Biomaterials, 32 (2011) 2999-3007.
  • 2. T. Y. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Li, F. Y. Li, High-quality water soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging, Biomaterials, 32 (2011) 2959-2968.
  • 3. M.Jr. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science, 281 (1998) 2013-2016.
  • 4. W.C.W. Chan, S. Nie,Quantum dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 281 (1998) 2016-2018.
  • 5. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298 (2002) 1759-1762.
  • 6. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 4 (2005) 435-446.
  • 7. J. Escobedo, O. Rusin, S. Lim, R.M.Strongin. NIR Dyes for bioimaging applications, Curr. Opin. Chem. Biol., 14 (2009) 64-70.
  • 8. C.H. Huang, F.Y. Li, W. Huang, Intruduction to Organic Light- Emitting Materials and Devices, Press of Fudan University, Shanghai, 2005.
  • 9. Y. Ma, S. Liu, Y. Wu, C Yang, X. Liu, Q. Zhao, H. Wu, J. Liang, F. Li, W. Huang, Water-soluble phosphorescent iridium(iii) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells, J. Mater. Chem., 21 (2011) 18974-18982.
  • 10. W.S. Speidl, M. Nikfardjam, A. Niessner Mild hyperhomocysteinemia is associated with a decreased fibrinolytic activity in patients after ST-elevation myocardial infarction, Thromb Res., 119 (2007) 331-336.
  • 11. S. Kostić, Ž Mićovic, L Andrejević,.The effects of L-cysteine and N-acetyl-L-cysteine on homocysteine metabolism and haemostatic markers, and on cardiac and aortic histology in subchronically methionine-treated Wistar male rats, Mol. Cell Biochem., 451 (2019) 43-54.
  • 12. P.M. Ueland, M.A. Mansoor, A.B. Guttormsen. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiols status-a possible element of the extracellular antioxidant defence system, J. Nutr., 126 (1996) 1281S-1281S4S.
  • 13. M.A. Badgley, D.M. Kremer, H.C. Maurer, K.E. Delgıorno, H. Lee, V. Purohıt, I.R. Sagalovskıy, A. Ma, J. Kapılıan, C.E. M. Fırl, A.R. Decker, S.A. Sastra, C.F. Palermo, L.R. Andrade, P. Sajjakulnukıt, L. Zhang, Z.P. Tolstyka, T. Hırschhorn, C. Lamb, T. Lıu, W. Gu, E.S. Seeley, E. Stone, G. Georgıou, U. Manor, A. Iuga, G.M. Wahl, B.R. Stockwell, C.A. Lyssıotıs, K.P. Olıve, A drug that lowers intracellular cysteine levels inhibits growth of pancreatic tumors in mice by inducing a specific form of cell death, 368 (2020) 85-89.
  • 14. M.E. Johll, D.G.Willimas, D.C.Johnson Activated pulsed amperometric detection of cysteine at platinum electrodes in acidic media Electroanalysis, 9 (1997), p. 1397.
  • 15. A.Besada, N.B. Tadros, Y.A. Gawargious, Copper(II)- neocuproine as color reagent for some biologically active thiols: spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine Microchim. Acta, 99 (1989) 143-146.
  • 16. E. Tütem, R. Apak, Simultaneous spectrophotometric determination of cysteine in amino acid mixture using copper(II)-neocupoine reagent, Anal. Chim. Acta, 255 (1991) 121-125.
  • 17. J. Chrastil, Spectrophotometric determination of cysteine and cystine in urine, Analyst, 15 (1990) 1383-1384.
  • 18. T. Pérez-Ruiz, C. Martinez Lozano, V. Tomás, J. Carpena, Spectrofluorimetric flow injection method for the individual and successive determination of l-cysteine and l-cystine in pharmaceutical and urine samples, Analyst, 117 (1992) 1025-1028.
  • 19. J. Russel, J.A. Mckeown, C. Hensman, W.E. Smith, J. Reglinski, HPLC determination of biologically active thiols using pre- column derivatization with 5, 5′-dithio-bis-2-nitro-benzoic acid, J. Pharm. Biomed. Anal., 15 (1999) 1757-1763.
  • 20. W. Jin, Y. Wang, Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalagm microelectrode without deoxygenation, J. Chromatogr. A., 769 (1997) 307-314.
  • 21. R. Zhang, J. Yong, J. Yuan, Z.P. Xu, Recent advances in the development of responsive probes for selective detection of cysteine, Coordin. Chem. Rev., 408 (2020) 213182.
  • 22. S.D. Naidu, A.T. Dinkova-Kostova. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease, Open Biol., 10200105 (2020).
  • 23. Q. Zhao, S.J. Liu and W. Huang, Promising optoelectronic materials: polymers containing phosphorescent iridium(III) complexes, Macromol. Rapid Commun., 31 (2010) 794.
  • 24. Z.Q. Chen, Z.Q. Bian, C.H. Huang, Functional IrIII complexes and their applications, Adv. Mater., 22 (2010) 1534.
  • 25. W.Y. Wong, C.L. Ho, Heavy metal organometallic electrophosphors derived from multi-component chromophores, Coord. Chem. Rev., 253 (2009) 1709-1758.
  • 26. Y. You, S.Y. Park, Phosphorescent iridium(iii) complexes: toward high phosphorescence quantum efficiency through ligand control, Dalton Trans., 8 (2009) 1267-1282.
  • 27. M. Yu, X. Q. Zhao, L. Shi, F. Li, Z. Zhou, H. Yang, T. Yi, C. Huang, Cationic iridium (III) complexes for phosphorescence staining in the cytoplasm of living cells, Chem. Commun., 18 (2008) 2115-2117.
  • 28. Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang, F. Li, Cationic iridium (III) complexes with tunable emission color as phosphorescent dyes for live cell imaging, Organometallics, 29 (2010) 1085-1091.
  • 29. K.Y. Zhang, S.P.Y. Li, N. Zhu; I.W. S Or, M.S.H Cheung, Y.W. Lam, K.K. W. Lo, Structure, photophysical and electrochemical properties, biomolecular interactions, and intracellular uptake of luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes, Inorg. Chem., 49 (2010) 2530-2540.
  • 30. M. Zhang, M. Yu, F. Li, M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang, D. Zhang, T. Yi, C. Huang, A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc.,129 (2007) 10322-10323.
  • 31. L. Zhang, Y. Yuan, X. Wen, Y. Li, C. Cao, Q. Xiong, A coordination and ligand replacement based three-input colorimetric logic gate sensing platform for melamine, mercury ions, and cysteine, RSC Adv., 5 (2015) 59106-59113.
  • 32. Y.P. Dong, M.J. Shi, B.H. Tong, Q.F. Zhang, Chemiluminescence of a cyclometallated iridium (III) complex and its application in the detection of cysteine, Luminescence, 27 (2014) 414- 418.
  • 33. H. Chen, Q. Zhao, Y. Wu, F. Li, H. Yang, T. Yi, C. Huang, Selective phosphorescence chemosensor for homocysteine based on an iridium (III) complex, Inorg. Chem. 46 (2007) 11075-11081.
APA ÜNLÜER Ö (2021). Development of Iridium Based Fluorimetric Method for Determination of Cysteine. , 355 - 365. 10.15671/hjbc.798021
Chicago ÜNLÜER Özlem Biçen Development of Iridium Based Fluorimetric Method for Determination of Cysteine. (2021): 355 - 365. 10.15671/hjbc.798021
MLA ÜNLÜER Özlem Biçen Development of Iridium Based Fluorimetric Method for Determination of Cysteine. , 2021, ss.355 - 365. 10.15671/hjbc.798021
AMA ÜNLÜER Ö Development of Iridium Based Fluorimetric Method for Determination of Cysteine. . 2021; 355 - 365. 10.15671/hjbc.798021
Vancouver ÜNLÜER Ö Development of Iridium Based Fluorimetric Method for Determination of Cysteine. . 2021; 355 - 365. 10.15671/hjbc.798021
IEEE ÜNLÜER Ö "Development of Iridium Based Fluorimetric Method for Determination of Cysteine." , ss.355 - 365, 2021. 10.15671/hjbc.798021
ISNAD ÜNLÜER, Özlem Biçen. "Development of Iridium Based Fluorimetric Method for Determination of Cysteine". (2021), 355-365. https://doi.org/10.15671/hjbc.798021
APA ÜNLÜER Ö (2021). Development of Iridium Based Fluorimetric Method for Determination of Cysteine. Hacettepe Journal of Biology and Chemistry, 49(4), 355 - 365. 10.15671/hjbc.798021
Chicago ÜNLÜER Özlem Biçen Development of Iridium Based Fluorimetric Method for Determination of Cysteine. Hacettepe Journal of Biology and Chemistry 49, no.4 (2021): 355 - 365. 10.15671/hjbc.798021
MLA ÜNLÜER Özlem Biçen Development of Iridium Based Fluorimetric Method for Determination of Cysteine. Hacettepe Journal of Biology and Chemistry, vol.49, no.4, 2021, ss.355 - 365. 10.15671/hjbc.798021
AMA ÜNLÜER Ö Development of Iridium Based Fluorimetric Method for Determination of Cysteine. Hacettepe Journal of Biology and Chemistry. 2021; 49(4): 355 - 365. 10.15671/hjbc.798021
Vancouver ÜNLÜER Ö Development of Iridium Based Fluorimetric Method for Determination of Cysteine. Hacettepe Journal of Biology and Chemistry. 2021; 49(4): 355 - 365. 10.15671/hjbc.798021
IEEE ÜNLÜER Ö "Development of Iridium Based Fluorimetric Method for Determination of Cysteine." Hacettepe Journal of Biology and Chemistry, 49, ss.355 - 365, 2021. 10.15671/hjbc.798021
ISNAD ÜNLÜER, Özlem Biçen. "Development of Iridium Based Fluorimetric Method for Determination of Cysteine". Hacettepe Journal of Biology and Chemistry 49/4 (2021), 355-365. https://doi.org/10.15671/hjbc.798021