Yıl: 2021 Cilt: 14 Sayı: 1 Sayfa Aralığı: 35 - 52 Metin Dili: İngilizce İndeks Tarihi: 25-01-2022

An Open-Source Hypersonic Solver For Non-equilibrium Flows

Öz:
An implementation of a thermally non-equilibrium modeling on an existing open-source CFD solver is presented in this study. A newly coded open-source Navier-Stokes solver, hyperReactingFoam, including two-temperature model was developed within the framework of OpenFOAM. Disregarding electronic states in ionizing flows, the solver decomposes equilibrium temperature into trans-rotational and vibrational temperatures in thermal non-equilibrium conditions. Relaxations between distinct energy pools are achieved by utilizing an additional vibrational energy equation for each specie in the mixture. Coupling between trans-rotational and vibrational energy modes is governed by Landau-Teller equation. For energy transfers between different vibrationally excited species, formulation that is proposed by Knab et al. is implemented into the solver. The chemistry-vibrational coupling is realized by the Park TTv Model. Due to the multi- component nature of reacting flow, mixture pressure is calculated by using Dalton's Law from partial pressures of each reacting specie. Code validation tests are conducted on frequently used benchmark models such as adiabatic heat bath, blunted cone, and double cone models. It has been shown that hyperReactingFoam solver is in good agreement with other numerical solvers and experiments available in the literature.
Anahtar Kelime:

Denge Konumundan Uzak Akışlar İçin Açık Kaynak Kodlu Hipersonik Bir Çözücü

Öz:
Bu çalışmada ısıl dengede olmayan tepkimeli bir akış çözücüsü mevcut açık kaynaklı bir HAD çözücüsü modifiye edilerek geliştirilmiştir. Geliştirilen Navier-Stokes çözücüsü olan hyperReactingFoam OpenFOAM yazılımı kapsamında geliştirilmiş olup iki-sıcaklık modelini ihtiva etmektedir. İki sıcaklık modeli kapsamında, elektronik ve iyonlaşma etkileri ihmal edilerek ısıl dengeden uzak akış fiziği, denge sıcaklığının öteleme-dönme ve titreşimsel sıcaklıklara ayrılmasıyla modellenmiştir. Titreşimsel sıcaklıkların elde edilebilmesi adına korunum denklemlerine ek bir titreşimsel enerji denklem seti ilave edilmiştir. Öteleme-dönme ve titreşimsel enerji modları arasındaki rahatlama etkisi Landau-Teller denklemi ile, farklı titreşimsel modlar arasındaki enerji transferleri Knab vd. tarafından geliştirilen bir formülasyon ile, kimyasal etkilerle titreşimsel enerji modu arasındaki etkileşim ise Park TTv modeli ile gerçekleştirilmiştir. Karışımın toplam basıncı Dalton yasası yardımıyla hesaplanmıştır. Geliştirilen çözücü adyabatik ısı banyosu, küt burunlu koni ve sivri burunlu koni gibi hipersonik problemlerde sıklıkla kullanılan test modelleri üzerinde doğrulanmıştır. Doğrulama çalışmalarından elde edilen sonuçlara göre hyperReactingFoam çözücüsünün literatürdeki diğer hipersonik çözücüler ve deneyler ile uyumlu olduğu görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] R. E. Brown, V. Casseau, D. E. R. Espinoza, and T. J. Scanlon, "A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis," Aerospace 2016, vol. 3, 2016. [Online]. Available: https://www.mdpi.com/2226-4310/3/4/45. [Accessed Sept. 20, 2020].
  • [2] A. J. Lofthouse, "Nonequilibrium Hypersonic Aerothermodynamics Using The Direct Simulation Monte Carlo And Navier Stokes Models", Ph.D. dissertation, The University of Michigan, Ann Arbor, MI, USA, 2008.
  • [3] J. D. Anderson, “Hypersonic and High Temperature Gas Dynamics”, 2nd ed., AIAA Education Series, pp. 21-22, 2006.
  • [4] C. Park, “Assessment of Two-Temperature Kinetic Model for Ionizing Air,” Journal of Thermophysics and Heat Transfer, vol. 3, no. 3, pp. 233–244, July 1989.
  • [5] C. Park, "The Limits of Two-Temperature Kinetic Model in Air", 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2010, Orlando, Florida, USA, January 4 – 7, 2010.
  • [6] M. Barnhardt, M. Wright, G. V. Candler, P. Gnoffo, B. Hollis, D. Hash, I. Nompelis, J. Olejniczak, M. Pulsonetti, and D. Prabhu, "FIRE II Calculations for Hypersonic Nonequilibrium Aerothermodynamics Code Verification: DPLR, LAURA, and US3D", 45th AIAA Aerospace Sciences Meeing and Exhibit, AIAA 2007 Reno, Nevada, 2007.
  • [7] R. W. MacCormack, and G. V. Candler, “The Solution of the Navier–Stokes Equations Using Gauss–Seidel Line Relaxation,” Computers and Fluids, vol. 17, no. 1, pp. 135–150, January 1989.
  • [8] H. C. Yee, “A Class of High-Resolution Explicit and Implicit Shock Capturing Methods,” NASA TM 101088, Feb. 1989.
  • [9] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,” Journal of Computational Physics, vol. 43, no. 2, pp. 357-372, October 1981.
  • [10] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, Journal of Computational Physics, vol. 49, no. 3, pp. 357-393, April 1983.
  • [11] H. C. Yee, “On Symmetric and Upwind TVD Schemes,” NASA TM 88325, 1990.
  • [12] L. C. Scalabrin, and I. D. Boyd. “Development of an unstructured navier-stokes solver for hypersonic nonequilibrium aerothermodynamics”, In Proceedings of the 38th AIAA Thermophysics Conference, Toronto, ON, Canada, 6–9 June 2005.
  • [13] V. Casseau, R. C. Palharini, T. J. Scanlon, and R. E. Brown, “A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-dimensional Analysis”, Aerospace 2016, vol 3, 2016 [Online]. Available: https://www.mdpi.com/2226-4310/3/4/34. [Accessed Sept. 20, 2020].
  • [14] A. Kurganov, S. Noelle, and G. Petrova, "Semi- discrete central-upwind schemes for hypersonic conservation laws and Hamilton Jacobi equations", SIAM Journal on Scientific Computing, vol. 23, pp.
  • [15] D. E. R. Espinoza, V. Casseau, T. J. Scanlon, and R. E Brown, “An Open Source Hybrid CFD-DSMC Solver for High-Speed Flows”, In Proceedings of the AIP Conference, Victoria, BC, Canada, 10–15 July 2016.
  • [16] I. D. Boyd, and Dietrich S., "Scalar and Parallel Optimized Implementation of the Direct Simulation Monte Carlo Method", Journal of Computational Physics, vol. 126, Issue 2, pp. 328-342, 1996.
  • [17] A. S. Durna, B. Celik, “Time-periodic shock interaction mechanisms over double wedges at Mach 7,” Shock Waves, vol. 29, pp. 381–399, March 2019.
  • [18] A. S. Durna, B. Celik, “Effects of Double-Wedge Aft Angle on Hypersonic Laminar Flows”, AIAA Journal, vol. 58, no 4, April 2020.
  • [19] G. V. Candler, and I. Nompelis, “Computational Fluid Dynamics for Atmospheric Entry, In Non- Equilibrium Dynamics: From Physical Models to Hypersonic Flights”, The von Karman Institute for Fluid Dynamics: Rhode-Saint-Genèse, Belgium, 2009.
  • [20] W. G. Vincenti, and Jr., C. H. Kruger, Introduction to Physical Gas Dynamics, Krieger Publishing Company, Florida, 1965.
  • [21] J. Olejniczak, and G. V. Candler, “Vibrational Energy Conservation with Vibration - Dissociation Coupling: General Theory and Numerical Studies,” Physics of Fluids, vol. 7, no. 7, pp. 1764-1774, July 1995.
  • [22] F. G. Blottner, M. Johnson, and M. Ellis, “Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures,” Sandia Laboratories, Report No. SC-RR-70-754, Albuquerque, New Mexico, 1971.
  • [23] C. R. Wilke, "A Viscosity Equation for Gas Mixtures", Journal of Chemical Physics, vol. 18, pp. 517-519, 1950.
  • [24] L. Landau, and E. Teller, “On the theory of sound dispersion”, Physikalische Zeitschrift Der Sowjetunion, vol. 10, 1936.
  • [25] R. C. Millikan, and D. R. White, “Systematics of Vibrational Relaxation”, Journal of Chemical Physics, vol. 39, pp. 3209–3213, 1963.
  • [26] C. Park, Nonequilibrium Hypersonic Aerothermodynamics, Wiley International, New York, NY, USA, 1990.
  • [27] D. A. Andrienko, “Non-Equilibrium Models for High Temperature Gas Flows”, Ph.D. Thesis, Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 2014.
  • [28] O. Knab, H. H. Frühauf, and E. W. Messerschmid, “Theory and Validation of the Physically Consistent Coupled Vibration - Chemistry Vibration Model”, Journal of Thermophysics and Heat Transfer, vol. 9, pp. 219–226, April 1995.
  • [29] O. Knab, H. H. Frühauf, and S. Jonas, “Multiple Temperature Descriptions of Reaction Rate Constants with Regard to Consistent Chemical-Vibrational Coupling”, In Proceedings of the 27th Thermophysics Conference, AIAA 1992, Nashville, TN, USA, July 6– 8, 1992.
  • [30] L. Scalabrin, “Numerical Simulation of Weakly Ionized Hypersonic Flow over Reentry Capsules”, Ph.D. dissertation, The University of Michigan, Ann Arbor, MI, USA, 2007.
  • [31] P. V. Marrone, and C. E. Treanor, “Chemical relaxation with preferential dissociation from excited vibrational levels”, The Physics of Fluids, vol. 6, pp. 1215–1221, 1963.
  • [32] G. A. Bird, “The DSMC Method”, 2nd ed., Create Space Independent Publishing Platform, Sydney, Australia, 2013.
  • [33] “CHEMKIN”, en.wikipedia.org. [Online].Available: https://en.wikipedia.org/wiki/CHEMKIN. [Accessed: Sept. 20, 2020]
  • [34] S. J. Gordon, B. J. McBride, and M. J. Zehe, “NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species”, Glenn Research Center, Cleveland, Ohio, Tech. Rep. NASA/TP-2002-211556, 2002.
  • [35] I. D. Boyd, and E. Josyula, “State resolved vibrational relaxation modeling for strongly nonequilibrium flows”, Physics of Fluids, vol. 23, 2011.
  • [36] C. Park, “Assessment of two-temperature kinetic model for dissociating and weakly ionizing nitrogen,” Journal of Thermophysics and Heat Transfer, vol. 2, July 1986.
  • [37] C. Park, “Assessment of two-temperature kinetic model for ıonizing air,” 4th Thermophysics and Heat Transfer Conference, Boston, MA, U.S.A, June 2-4, 1986.
  • [38] J. C. Maxwell, “On stresses in rarefied gases arising from inequalities of temperature”, Philosophical Transactions of the Royal Society of London, vol. 170, pp. 231–256, 1879.
  • [39] M. Von Smoluchowski, “Uber wärmeleitung in verdünnten Gasen”, Annalen der Physik, vol. 300, pp. 101–130, 1898.
  • [40] M. MacLean, M. Holden, and A. Dufrene, “Comparison Between CFD and Measurements for Real-Gas Effects on Laminar Shock Wave Boundary Layer Interaction, I”, AIAA Aviation 2014, AIAA, Reston, VA, 2014.
  • [41] N. Kianvashrad, and D. Knight, “The effect of thermochemistry on prediction of aerothermodynamic loading over a double cone in a laminar hypersonic flow,” 2018 AIAA Aerospace Sciences Meeting, AIAA 2018, Kissimmee, Florida, January 8-12, 2018.
  • [42] C. Park, “On convergence of computation of chemically reacting flow,” 23rd Aerospace Sciences Meeting, AIAA 1985, Reno, NV, USA, January 14-17, 1985.
APA VATANSEVER D, celik b (2021). An Open-Source Hypersonic Solver For Non-equilibrium Flows. , 35 - 52.
Chicago VATANSEVER DAVUT,celik bayram An Open-Source Hypersonic Solver For Non-equilibrium Flows. (2021): 35 - 52.
MLA VATANSEVER DAVUT,celik bayram An Open-Source Hypersonic Solver For Non-equilibrium Flows. , 2021, ss.35 - 52.
AMA VATANSEVER D,celik b An Open-Source Hypersonic Solver For Non-equilibrium Flows. . 2021; 35 - 52.
Vancouver VATANSEVER D,celik b An Open-Source Hypersonic Solver For Non-equilibrium Flows. . 2021; 35 - 52.
IEEE VATANSEVER D,celik b "An Open-Source Hypersonic Solver For Non-equilibrium Flows." , ss.35 - 52, 2021.
ISNAD VATANSEVER, DAVUT - celik, bayram. "An Open-Source Hypersonic Solver For Non-equilibrium Flows". (2021), 35-52.
APA VATANSEVER D, celik b (2021). An Open-Source Hypersonic Solver For Non-equilibrium Flows. Havacılık ve Uzay Teknolojileri Dergisi, 14(1), 35 - 52.
Chicago VATANSEVER DAVUT,celik bayram An Open-Source Hypersonic Solver For Non-equilibrium Flows. Havacılık ve Uzay Teknolojileri Dergisi 14, no.1 (2021): 35 - 52.
MLA VATANSEVER DAVUT,celik bayram An Open-Source Hypersonic Solver For Non-equilibrium Flows. Havacılık ve Uzay Teknolojileri Dergisi, vol.14, no.1, 2021, ss.35 - 52.
AMA VATANSEVER D,celik b An Open-Source Hypersonic Solver For Non-equilibrium Flows. Havacılık ve Uzay Teknolojileri Dergisi. 2021; 14(1): 35 - 52.
Vancouver VATANSEVER D,celik b An Open-Source Hypersonic Solver For Non-equilibrium Flows. Havacılık ve Uzay Teknolojileri Dergisi. 2021; 14(1): 35 - 52.
IEEE VATANSEVER D,celik b "An Open-Source Hypersonic Solver For Non-equilibrium Flows." Havacılık ve Uzay Teknolojileri Dergisi, 14, ss.35 - 52, 2021.
ISNAD VATANSEVER, DAVUT - celik, bayram. "An Open-Source Hypersonic Solver For Non-equilibrium Flows". Havacılık ve Uzay Teknolojileri Dergisi 14/1 (2021), 35-52.