Yıl: 2021 Cilt: 14 Sayı: 2 Sayfa Aralığı: 193 - 208 Metin Dili: İngilizce İndeks Tarihi: 25-01-2022

Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM

Öz:
Flow over a cavity is one of the most intriguing problems in aeronautics. Although geometry is simple, the physics of cavity requires uttermost attention. In this study, various novel passive flow control techniques such as reshaping the aft wall as stair-stepped configuration or combinations of spoilers with reshaped aft wall are applied to cavity and effects of these techniques are investigated numerically. Combined configurations that are proposed in the present study are considered as a novelty to the literature. Analyses are performed with Detached Eddy Simulation method three-dimensionally in transonic regime (0.85 Mach) for a Reynolds number of ~107 based on the cavity length, 0.508 m, using open-source software OpenFOAM. Results are compared with both experimental data and each other, fundamentally in terms of Overall Average Sound Pressure Level. Further examinations are also performed for features such as Mach number, turbulent intensity and turbulent coherent structures. It is seen that combined passive flow control methods have reduced Overall Average Sound Pressure Level by ~10 dB. Newly proposed passive flow control methods have also reduced Overall Average Sound Pressure Level by ~6 dB. A high correlation between coherent turbulent structures and generated noise is observed.
Anahtar Kelime:

Açık Kavitelerde Transonik Hızlarda OpenFOAM Kullanılarak Pasif Akış Kontrol Yöntemleri ile Gürültü Azaltımı

Öz:
Kavite akışları, havacılık alanındaki en ilgi çekici problemlerden birisidir. Bu çalışmada, kavite arka duvarını merdivenimsi bir yapıda yeniden şekillendirmek veya arka duvarı yeniden şekillendirilmiş bir kaviteye spoyler ekleyerek bileşik bir yöntem haline getirmek gibi birçok yenilikçi pasif akış kontrol tekniği uygulanmış ve bu yöntemler sayısal olarak detaylı bir şekilde incelenmiştir. Kavite arka duvarının yeniden şekillendirilip spoyler ile birlikte uygulandığı bileşik yöntemler özgün ve literature katkıda bulunabilme potansiyeline sahip olarak düşünülmektedir. Analizler Ayrık Burgaç Benzetimi yöntemi kullanılarak, üç boyutlu bir şekilde, transonik akış bölgesinde (0.85 Mach), kavite uzunluğu (0.508 m) temel alınarak ~107 Reynolds sayısında, açık kaynak kodlu mühendislik yazılımı OpenFOAM kullanılarak gerçekleştirilmiştir. Sonuçlar hem deneysel verilerle hem de kendi aralarında Ortalama Ses Basınç Tayf Düzeyi anlamında incelenmiştir. Ek olarak, Mach sayısı, türbülans yoğunluğu ve türbülanslı yapılar açısından da incelemeler yapılmıştır. Uygulanan yöntemlerle ~10 dB seviyelerinde gürültü azaltımı elde edilmiştir. Yenilikçi olarak önerilen yötenmlerde ise ~6 dB gürültü iyileştirmesi görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] K. Krishnamurty, “Acoustic radiation from two- dimensional rectangular cutouts in aerodynamics surfaces,” NACA, California Institute of Technology, USA, Tech. Rep. 3487, 1955.
  • [2] A. Roshko, “Some Measurements of Flow in a Rectangular Cut-Out,” NACA, California Institute of Technology, Tech. Rep. 3488, 1955.
  • [3] J. E. Rossiter, “A Preliminary Investigation into Armament Bay Buffet at Subsonic and Transonic Speeds,” Royal Aircraft Establishment, Farnborough, UK, Technical Memorandum 679, 1960.
  • [4] S. H. Shih, A. Hamed, and J. Yeuan, “Unsteady supersonic cavity flow simulations using coupled k- epsilon and Navier-Stokes equations,” AIAA Journal, vol. 32, no. 10, pp. 2015-2021, October 1994.
  • [5] R. L. Stallings Jr, and F. J. Wilcox Jr, “Experimental cavity pressure distributions at supersonic speeds,” Scientif. and Techn. Information Branch, NASA, Washington, DC, NASA-TP-2683. 1987.
  • [6] E. B. Plentovich, R. L. Stallings, and M. B. Tracy, “Experimental cavity pressure measurements at subsonic and transonic speeds: Static-pressure results,” Office of Management, Scientific and Technical Information Program, NASA, Washington, DC, NASA-TP-3358. 1993.
  • [7] S. Izawa, “Active and Passive Control of Flow Past a Cavity,” in Wind Tunnels and Experimental Fluid Dynamics Research, J.C. Lerner, Ed. INTECH Open Access Publisher, 2011, pp. 369-394.
  • [8] D. A. Norton, “Investigation of B47 bomb bay buffet, ” Boeing Airplane Co., USA, Doc. No. D12675, 1952.
  • [9] J. E. Rossiter, J. E, “Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds,” Royal Aircraft Establishment London: H.M.S.O, UK, Tech. Rep. 64037, 1964.
  • [10] J.E. Rossiter, J. E. “The Effect of Cavities on the Buffeting of Aircraft,” Royal Aircraft Establishment, Farnborough, UK, Technical Memorandum 754, 1962.
  • [11] A. M. Lamp, and N. Chokani, “Computation of Cavity Flows with Suppression Using Jet Blowing,” Journal of Aircraft, vol. 34, no.4, pp. 545-551, July 1997.
  • [12] S. Arunajatesan, C. Kannepalli, N. Sinha, M. Sheehan, and G. Shumway, “Suppression of Cavity Loads Using Leading Edge Blowing Concepts,” 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008.
  • [13] S. J. Lawson and G. N. Barakos “Assessment of Passive Flow Control for Transonic Cavity Flow Using Detached-Eddy Simulation,” Journal of Aircraft, vol. 46, no.3, pp. 1009-1029, May 2009.
  • [14] S. Lawson and G. Barakos, “Review of numerical simulations for high-speed, turbulent cavity flows,” Progress in Aerospace Sciences, vol. 47, no.3, pp. 186- 216, April 2011.
  • [15] L. N. Cattafesta, Q. Song, D. R. Williams, C. W. Rowley, and F. S. Alvi, “Active control of flow-induced cavity oscillations,” Progress in Aerospace Sciences, vol. 44, pp. 479-502, October 2008.
  • [16] L. Cattafesta, F. Alvi, D. Williams and C. Rowley, “Review of Active Control of Flow-Induced Cavity Oscillations (Invited)”, in 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, Florida, USA, June 23-26, 2003.
  • [17] L. Shaw, R. Clark, and D. Talmadge, “F-111 generic weapons bay acoustic environment,” Journal of Aircraft, vol. 25, no.2, pp. 147-153, February 1988.
  • [18] B. Smith, T. Welterlen, B. Maines, L. Shaw, M. Stanek and J. Grove, “Weapons bay acoustic suppression from rod spoilers,” 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, U.S.A, January 14-17, 2002.
  • [19] A. J. Saddington, V. Thangamani, and K. Knowles, “Comparison of Passive Flow Control Methods for a Cavity in Transonic Flow,” Journal of Aircraft, vol. 53, no.5, pp. 1439-1447, September 2016.
  • [20] A. F. Charwat, J. N. Roos, F. C. Dewey and J. A. Hitz, “An Investigation of Separated Flows - Part I: The Pressure Field,” Journal of the Aerospace Sciences, vol. 28, no.6, pp. 457-470, June 1961.
  • [21] J. E. Rossiter and A. G. Kurn, “Wind Tunnel Measurements of the Unsteady Pressures in and behind a Bomb Bay,” Royal Aircraft Establishment, Farnborough, UK, Technical Note 2845, 1962.
  • [22] O. Baysal, G. Yen and K. Fouladi, “Navier-Stokes Computations of Cavity Aeroacoustics with Suppression Devices,” Journal of Vibration and Acoustics, vol. 116, pp. 105-112, January 1994.
  • [23] R. L. Sarno and M. E. Franke, “Suppression of flow-induced pressure oscillations in cavities,” Journal of Aircraft, vol. 31, pp. 90-96, January 1994.
  • [24] R. L. Stallings Jr, E. B. Plentovich, M. B. Tracy and M. J. Hemsch, “Effect of Passive Venting on Static Pressure Distributions in Cavities at Subsonic and Transonic Speeds,” NASA, USA, Technical Memorandum 4549, 1994.
  • [25] J. A. Ross and J. W. Peto, “Internal Stores Carriage Research at RAE,” QinetiQ, UK, Technical Memorandum 2223, 1992.
  • [26] X. Zhang, and J. A. Edwards, “Pressure over a dual-cavity cascade at supersonic speeds,” The Aeronautical Journal, vol. 103, pp. 45-54, January 1999.
  • [27] S. Arunajatesan, J. Shipman and N. Sinha, “Hybrid RANS-LES simulation of cavity flow fields with control,” 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, U.S.A., January 14-17, 2002.
  • [28] L. S. Ukeiley, M. K. Ponton, J. M. Seiner and B. Jansen, “Suppression of Pressure Loads in Cavity Flows,” AIAA Journal, vol. 42, pp. 70-79, January 2004.
  • [29] P. Nayyar, CFD Analysis of Transonic Turbulent Cavity Flows. PhD [Dissertation]. Glasgow, WA: Glasgow Univ., 2005, [Online]. Available: http://theses.gla.ac.uk/.
  • [30] P. Comte, F. Daude and I. Mary, “Simulation of the reduction of unsteadiness in a passively controlled transonic cavity flow,” Journal of Fluids and Structures, vol. 24, pp. 1252-1261, November 2008.
  • [31] R. Ashworth, “DES of a Cavity with Spoiler,” In Advances in Hybrid RANS-LES Modelling S.H. Peng, W. Haase, Ed. Springer, Berlin, Heidelberg, 2008, pp. 162-171.
  • [32] A. Omer, Passive Methods for Suppressing Acoustic Resonance Excitation in Shallow Rectangular Cavities. MSc [Dissertation]. Oshawa. WA: Ontario Institute of Technology Univ., 2014. [Online]. Available: http://ir.library.dc-uoit.ca/.
  • [33] Y. Wang, S. Li, and X. Yang, “Numerical investigation of the passive control of cavity flow oscillations by a dimpled non-smooth surface,” Applied Acoustics, vol. 111, pp. 16-24, October 2016.
  • [34] C. J. Greenshields, “OpenFOAM user guide,” OpenFOAM Foundation Ltd, version 3, 2015.
  • [35] D. P. Rizzetta and M. R. Visbal “Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control,” AIAA Journal, vol. 41, pp. 1452-1462, August 2003.
  • [36] F. R. Menter, M. Kuntz and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” Turbulence, Heat and Mass Transfer, vol. 4, pp. 625-632, January 2003.
  • [37] L. Larchevêque, P. Sagaut, T. Lê, and P. Comte, “Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number,” Journal of Fluid Mechanics, vol. 516, pp. 265-301, September 2004.
  • [38] K. M. Guleren, S. Turk, O. M. Demircan and O. Demir, “Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques,” in 3rd International Conference on Mechanical and Aeronautical Engineering, ICMAE 2017 Dubai, UAE, December 13-16, 2017, pp. 012-015.
  • [39] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method. Harlow: Pearson Education, 2011.
  • [40] P. G. F. E. Freitas, Numerical simulation of compressible flow over a deep cavity, MSc [Dissertation]. Lisbon, WA: Superior Technical İnstitute 2014. [Online]. Available: http://fenix.tecnico.ulisboa.pt/.
  • [41] S. Das and J. Cohen, “Effect of rear face geometry on the open cavity oscillatory flow at M= 0.9,” In 8th AIAA Flow Control Conference, Washington, D.C., USA, June 13-17, 2016, pp. 3175.
  • [42] T. Gautam, G. Lovejeet and A. Vaidyanathan, “Experimental study of supersonic flow over cavity with aft wall offset and cavity floor injection,” Aerospace Science and Technology, vol. 70, pp. 211-232, November 2017.
  • [43] K. Luo, W. Zhe, Z. Xiao and S. Fu, “Improved delayed detached-eddy simulations of sawtooth spoiler control before supersonic cavity,” International Journal of Heat and Fluid Flow, vol. 63, pp. 172-189, February 2017.
  • [44] S. Mancini, A. Kolb, I. Gonzalez-Martino and D. Casalino, “Effects of wall modifications on pressure oscillations in high-subsonic and supersonic flows over rectangular cavities,” In 25th AIAA/CEAS aeroacoustics conference Delft, The Netherlands, May 20-23, 2019, pp. 2692.
  • [45] ESDU, Aerodynamics and Aero-Acoustics of Rectangular Planform Cavities. Part I: Time-Averaged Flow, 2004.
  • [46] D. Nightingale, J. A. Ross, and G. Foster, “Cavity Unsteady Pressure Measurements-Examples from Wind-Tunnel Tests,” QinetiQ, Technical Report, 2005.
  • [47] T. V. Krishna, P. Kumar, S. Das, S. L. N. Desikan, “Effect of Cavity Rear Wall Modifications on Pressure Fluctuations at Supersonic Speeds,” Acta Astronautica, vol. 185, pp. 78-88, May 2021.
APA Demir O, celik b, Guleren K (2021). Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. , 193 - 208.
Chicago Demir Oguzhan,celik bayram,Guleren Kursad Melih Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. (2021): 193 - 208.
MLA Demir Oguzhan,celik bayram,Guleren Kursad Melih Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. , 2021, ss.193 - 208.
AMA Demir O,celik b,Guleren K Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. . 2021; 193 - 208.
Vancouver Demir O,celik b,Guleren K Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. . 2021; 193 - 208.
IEEE Demir O,celik b,Guleren K "Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM." , ss.193 - 208, 2021.
ISNAD Demir, Oguzhan vd. "Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM". (2021), 193-208.
APA Demir O, celik b, Guleren K (2021). Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. Havacılık ve Uzay Teknolojileri Dergisi, 14(2), 193 - 208.
Chicago Demir Oguzhan,celik bayram,Guleren Kursad Melih Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. Havacılık ve Uzay Teknolojileri Dergisi 14, no.2 (2021): 193 - 208.
MLA Demir Oguzhan,celik bayram,Guleren Kursad Melih Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. Havacılık ve Uzay Teknolojileri Dergisi, vol.14, no.2, 2021, ss.193 - 208.
AMA Demir O,celik b,Guleren K Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. Havacılık ve Uzay Teknolojileri Dergisi. 2021; 14(2): 193 - 208.
Vancouver Demir O,celik b,Guleren K Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM. Havacılık ve Uzay Teknolojileri Dergisi. 2021; 14(2): 193 - 208.
IEEE Demir O,celik b,Guleren K "Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM." Havacılık ve Uzay Teknolojileri Dergisi, 14, ss.193 - 208, 2021.
ISNAD Demir, Oguzhan vd. "Noise Reduction of Open Cavities by Passive Flow Control Methods at Transonic Speeds using OpenFOAM". Havacılık ve Uzay Teknolojileri Dergisi 14/2 (2021), 193-208.