Yıl: 2021 Cilt: 14 Sayı: 2 Sayfa Aralığı: 221 - 229 Metin Dili: İngilizce İndeks Tarihi: 25-01-2022

Angular Velocity Estimation for Nanosatellites Using Vector Measurements

Öz:
n the absence of gyro sensors, the straightforward approach to estimate the angular velocity is using a dynamics-based attitude filter which can provide angular rate information together with the attitude of the satellite. However, this approach requires also the reference directions for the vector measurements. In this article, assuming that the reference directions are not known, two different algorithms for angular velocity estimation, using only the body vector measurements are given and compared. They both rely on pre-filtering the noisy data, specifically for the magnetometer measurements. The first algorithm estimates the Residual Magnetic Moment (RMM) terms along with the angular velocity vector. The second algorithm does not use the spacecraft dynamics and model the angular accelerations as a first-order Markov process. Demonstrations show the first algorithm can provide an accuracy up too 0.035 /s for angular velocity estimates and accurately estimate the RMM terms, whereas the second algorithm is a computationally efficient alternate that can be used flexibly at any mission phase.
Anahtar Kelime:

Nano Uydular için Vektör Ölçümleri Kullanılarak Açısal Hız Kestirimi

Öz:
Dönüölçerlerin yokluğunda açısal hız kestirimi için kullanılabilecek en bilinen yöntemlerden biri dinamik tabanlı bir filtre ile hem açısal hızların hem de uydunun yöneliminin kestirimidir. Fakat bu yaklaşım vektör ölçümleri için referans yönelimleri de gerektirir. Bu makalede referans vektör yönlerinin bilinmediği varsayılarak, sadece gövde eksen takımında ölçülmüş vektörleri kullanan iki farklı açısal hız kestirim yöntemi sunulmuş ve karşılaştırılmıştır. Her iki yöntem de özellikle manyetometreler için gürültülü verilerin öncül bir filtreden geçirilmesine dayanmaktadır. İlk algoritma açısal hızların yanısıra Artık Manyetik Moment (AMM) terimlerini de kestirmektedir. İkinci algoritma uydu dinamiklerini kullanmamakta, açısal ivmeyi birinci mertebeden bir Markov süreci şeklinde modellemektedir. Benzetimler göstermektedir ki ilk algoritmao 0.035 /s mertebesinde bir açısal hız kestirim doğruluğuna erişebilmekte ve AMM terimlerini doğru olarak kestirebilmekte iken, ikinci algoritma farklı görev safhalarında da kullanılabilecek hesaplama açısından etkin bir alternatif sunmaktadır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] C. Hajiyev and D. Cilden Guler, “Review on gyroless attitude determination methods for small satellites,” Prog. Aerosp. Sci., vol. 90, pp. 54–66, March 2017.
  • [2] S. Jo, H. Bang, and H. Leeghim, “A Vector Measurement-based Angular Velocity Estimation Scheme for Maneuvering Spacecraft,” J. Astronaut. Sci., vol. 64, pp. 310–332, September 2017.
  • [3] I. Y. Bar-Itzhack, “Classification of algorithms for angular velocity estimation,” J. Guid. Control. Dyn., vol. 24, pp. 214–218, March-April 2001.
  • [4] L. Magnis and N. Petit, “Angular velocity nonlinear observer from vector measurements,” Automatica, vol. 75, pp. 46–53, August 2017.
  • [5] M. Lovera, “Spacecraft attitude and rate estimation from vector observations: A comparison study,” 2001 Eur. Control Conf. ECC Porto, Portugal, September 4- 7, 2001, pp. 3062–3067.
  • [6] I. Y. Bar-Itzhack, R. R. Harman, and J. K. Thienel, “Rigid body rate inference from attitude variation,” J. Guid. Control. Dyn., vol. 30, pp. 275–281, January- February 2007.
  • [7] H. Leeghim, H. Bang, and C. Y. Lee, “Angular Rate and Alignment Estimation for Gyroless Spacecraft by Only Star Trackers,” Int. J. Control. Autom. Syst., vol. 16, pp. 2235–2243, April 2018.
  • [8] D. Spiller and F. Curti, “A geometrical approach for the angular velocity determination using a star sensor,” Acta Astronaut., In Print, December, 2020.
  • [9] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from vector observations,” J. Guid. Control. Dyn., vol. 4, pp. 70–77, January-February 1981.
  • [10] C. Hajiyev and H. E. Soken, Fault Tolerant Attitude Estimation for Small Satellites. Boca Raton: CRC Press, 2021.
  • [11] H. Ma and S. Xu, “Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft,” Acta Astronaut., vol. 102, pp. 89–102, May 2014.
  • [12] Y. Oshman and F. L. Markley, “Sequential gyroless attitude and attitude-rate estimation from vector observations,” Acta Astronaut., vol. 46, pp. 449–463, April 2000.
  • [13] M. L. Psiaki, F. Martel, and P. K. Pal, “Three-axis attitude determination via kalman filtering of magnetometer data,” J. Guid. Control. Dyn., vol. 13, pp. 506–514, May-June 1990.
  • [14] P. F. Zhang, J. H. Hao, and Q. Chen, “Gyro-less angular velocity estimation and intermittent attitude control of spacecraft using coarse-sensors based on geometric analysis,” Aerosp. Sci. Technol., vol. 103, August 2020.
  • [15] P. Tortora, Y. Oshman, and F. Santoni, “Spacecraft angular rate estimation from magnetometer data only using an analytic predictor,” J. Guid. Control. Dyn., vol. 27, pp. 365–373, May-June 2004.
  • [16] W. H. Steyn, “Stability, Pointing, and Orientation,” in J. Pelton, and S. Madry (eds) Handbook of Small Satellites, Cham: Springer International Publishing, 2020, pp. 1–43.
  • [17] J. D. Searcy and H. J. Pernicka, “Magnetometer- Only Attitude Determination Using Novel Two-Step Kalman Filter Approach,” J. Guid. Control. Dyn., vol. 35, pp. 1693–1701, Novermber-December 2012.
  • [18] A. Lassakeur and C. Underwood, “Magnetic cleanliness program on cubesats for improved attitude stability,” J. Aeronaut. Sp. Technol., vol. 13, pp. 25–41, January 2020.
  • [19] S. Busch, P. Bangert, S. Dombrovski, and K. Schilling, “UWE-3, in-orbit performance and lessons learned of a modular and flexible satellite bus for future pico-satellite formations,” Acta Astronaut., vol. 117, pp. 73–89, December 2015.
  • [20] M. Reichhartinger, S. Koch, H. Niederwieser, and S. K. Spurgeon, “The Robust Exact Differentiator Toolbox: Improved Discrete-Time Realization,” Proc. IEEE Int. Work. Var. Struct. Syst. Graz, Austria, July 9-11, 2018, vol. 2018, pp. 1–6, 2018.
  • [21] H. E. Soken, “A survey of calibration algorithms for small satellite magnetometers,” Meas. J. Int. Meas. Confed., vol. 122, pp. 417–423, July 2018.
APA Soken H (2021). Angular Velocity Estimation for Nanosatellites Using Vector Measurements. , 221 - 229.
Chicago Soken Halil Ersin Angular Velocity Estimation for Nanosatellites Using Vector Measurements. (2021): 221 - 229.
MLA Soken Halil Ersin Angular Velocity Estimation for Nanosatellites Using Vector Measurements. , 2021, ss.221 - 229.
AMA Soken H Angular Velocity Estimation for Nanosatellites Using Vector Measurements. . 2021; 221 - 229.
Vancouver Soken H Angular Velocity Estimation for Nanosatellites Using Vector Measurements. . 2021; 221 - 229.
IEEE Soken H "Angular Velocity Estimation for Nanosatellites Using Vector Measurements." , ss.221 - 229, 2021.
ISNAD Soken, Halil Ersin. "Angular Velocity Estimation for Nanosatellites Using Vector Measurements". (2021), 221-229.
APA Soken H (2021). Angular Velocity Estimation for Nanosatellites Using Vector Measurements. Havacılık ve Uzay Teknolojileri Dergisi, 14(2), 221 - 229.
Chicago Soken Halil Ersin Angular Velocity Estimation for Nanosatellites Using Vector Measurements. Havacılık ve Uzay Teknolojileri Dergisi 14, no.2 (2021): 221 - 229.
MLA Soken Halil Ersin Angular Velocity Estimation for Nanosatellites Using Vector Measurements. Havacılık ve Uzay Teknolojileri Dergisi, vol.14, no.2, 2021, ss.221 - 229.
AMA Soken H Angular Velocity Estimation for Nanosatellites Using Vector Measurements. Havacılık ve Uzay Teknolojileri Dergisi. 2021; 14(2): 221 - 229.
Vancouver Soken H Angular Velocity Estimation for Nanosatellites Using Vector Measurements. Havacılık ve Uzay Teknolojileri Dergisi. 2021; 14(2): 221 - 229.
IEEE Soken H "Angular Velocity Estimation for Nanosatellites Using Vector Measurements." Havacılık ve Uzay Teknolojileri Dergisi, 14, ss.221 - 229, 2021.
ISNAD Soken, Halil Ersin. "Angular Velocity Estimation for Nanosatellites Using Vector Measurements". Havacılık ve Uzay Teknolojileri Dergisi 14/2 (2021), 221-229.