Yıl: 2021 Cilt: 35 Sayı: 2 Sayfa Aralığı: 415 - 437 Metin Dili: Türkçe İndeks Tarihi: 27-01-2022

Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi

Öz:
Tüm dünyada süt ürünlerine olan talebin artışı süt endüstrisinin gelişmesine olanak sağlarken, bir yandan da proses atıklarının üretiminin artmasına neden olmaktadır. Süt endüstrisinde peynir altı suyu, yayık altı suyu, pıhtı haşlama suyu, proses yıkama suları, süt çamurları, diğer işleme ve temizleme suları başlıca atıklardır. Süt endüstrisi atıkları yüksek besin bileşeni konsantrasyonu, biyolojik oksijen ihtiyacı (BOİ), kimyasal oksijen ihtiyacı (KOİ), organik ve inorganik içeriklere sahiptirler. Ayrıca çok çeşitli temizlik asit ve alkali deterjan maddelerini de içerebilmektedirler. Süt endüstrisinden kaynaklanan kirlilik toprak, havanın ve suyun kalitesi, biyo-çeşitlilik ve ekosistemi etkileyebilmektedir. Bu sebeple sanayi atıklarından değerli mikrobiyel metabolitleri ve yeni fonksiyonel ürünleri üretmek amacıyla biyoteknolojik proseslerin geliştirilmesi oldukça önemli olduğu gibi, belirtilen biyolojik atıklardan kaynaklanan çevre kirliliğini azaltmak da mümkün hale gelebilmektedir.
Anahtar Kelime:

Environmental Effects of Dairy Industry Wastes and Their Biotechnological Evaluation

Öz:
The increase in demand for dairy products all over the world enables the dairy industry to develop, on the other hand, it causes an increase in the production of process waste. In the dairy industry, whey, buttermilk, cheese curd boiling water, process washing water, milk sludge, other processing and cleaning water are the main wastes. Dairy industry wastes have high nutrient concentration, biological oxygen demand (BOD), chemical oxygen demand (COD), organic and inorganic contents. They may also contain a wide variety of cleaning acid and alkaline detergents. Pollution from the dairy industry can affect the quality of soil, air and water, biodiversity and the ecosystem. For this reason, it is very important to develop biotechnological processes to produce valuable microbial metabolites and new functional products from industrial wastes, and it is also possible to reduce environmental pollution caused by the specified biological wastes.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Al-Wasify, R.S., Ali, M.N., and Hamed, S.R. 2018. Application of different magnetic intensities for the treatment of landfill leachate in Egypt. Cogent Engineering, 5: 1436114.
  • Alonso, S., Herrero, M., Rendueles, M., and Díaz, M. 2010. Residual yoghurt whey for lactic acid production. Biomass and Bioenergy, 34: 931-938.
  • Anderson, T.M., Bodie, E.A., Goodman, N., and Schwartz, R.D. 1986. Inhibitory effect of autoclaving whey-based medium on propionic acid production by Propionibacterium shermanii. Applied and Environmental Microbiology, 51: 427-428.
  • Aouidi, F., Khelifi, E., Asses, N., Ayed, L., and Hamdi, M. 2010. Use of cheese whey to enhance Geotrichum candidum biomass production in olive mill wastewater. Journal of Industrial Microbiology and Biotechnology, 37: 877-882.
  • Avci, H.R., and Ozcan, T. 2020. The characterisatıon of dairy industry waste buttermilk from different butter processing procedures. Fresenius Environmental Bulletin, 29: 5472-5478.
  • Bhatia, S.K., Joob, H., and Yanga, Y. 2018. Biowaste-to-bioenergy using biological methods-A mini-review.
  • Energy Conversion and Management, 177: 640-660.
  • Bila, D.M., Vendramel, S.M.R., and Sant'Anna, G.L., J. 2016. Traitement enzymatique et digestion anaérobie d’une mousse de flottation. Chambéry, France: Annales 5èmes Journées de la Methanisation (édtion électronique).
  • Britz, T.J., van Schalkwyk, C., and Hung, Y.T. 2006. Treatment of dairy processing waste waters. Waste Treatment in the Food Processing Industry, 1-28p.
  • Carrere, H., Rafrafi, Y., Battimelli, A., Torrijos, M., Delgenes, J.P., and Motte, C. 2012. Improving methane production during the codigestion of waste-activated sludge and fatty wastewater: Impact of thermo-alkaline pretreatment on batch and semi-continuous processes. Chemical Engineering Journal, 210: 404-409.
  • Carvalho, F., Prazeres, A.R., and Rivas, J. 2013. Cheese whey waste water: Characterization and treatment.
  • Science of the Total Environment, 445-446: 385-396.
  • Chandra, R., Castillo-Zacarias, C., Delgado, P., and Parra-Saldívar, R. 2018. A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production, 183: 1184-1196.
  • Chatzipaschali, A.A., and Stamatis A.G. 2012. Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current status and prospects. Energies, 5: 3492-3525.
  • Chen, G.Q., Talebi, S., Gras, S.L., Weeks, M., and Kentish, S.E. 2018. A review of salty waste stream management in the Australian dairy industry. Journal of Environmental Management, 224: 406-413.
  • Chen, Q., Xiao, Y., Zhang, W., Zhang, T., Jiang, B., Stressler, T., Fischer, L., and Mu, W. 2018. Current research on cellobiose 2-epimerase: Enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends in Food Science and Technology, 82: 167-176.
  • Chokshi, K., Pancha, I., Ghosh, A., and Mishra, S. 2016. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. Bioresource Technology, 221: 455-460.
  • Corrons, M.A., Bertucci, J.I., Liggieri, C.S., López, L.M.I., and Bruno, M.A. 2012. Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. LWT-Food Science and Technology, 47: 103-109.
  • Dabrowski, W., Żyłka, R., and Malinowski, P. 2017. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environmental Research, 153: 135-139.
  • Damasceno, F.R.C., Cammarota, M.C., and Freire, D.M.G. 2008. Impact of the addition of an enzyme pool on an activated sludge system treating dairy wastewater under fat shock loads. Journal of Chemical Technology and Biotechnology, 83: 730-738.
  • Daneshvar, E., Zarrinmehr, M.J., Koutra, E., Kornaros, M., Farhadian, O., and Bhatnagar, A. 2018. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Bioresource Technology, 273: 556-564.
  • Darouneh, E., Alavi, A., Vosoughi, M., Arjm, M., Seifkordi, A., and Rajabi, R. 2009. Citric acid production:
  • Surface culture versus submerged culture. African Journal of Microbiology Research, 3: 541-545.
  • Daverey, A., Pakshirajan, K., and Sangeetha, P. 2009. Sophorolipids production by Candida bombicola using synthetic dairy wastewater. International Journal of Environmental Sciences and Engineering, 1: 173-175.
  • De Jesus, C.S.A., Ruth, V.G.E., Daniel, S.F.R., and Sharma, A. 2015. Biotechnological alternatives for the utilization of dairy industry waste products. Advances in Bioscience and Biotechnology, 6: 223-235.
  • Ding, J., Zhao, F., Cao, Y., Xing, L., Liu, W., Mei, S., and Li, S. 2015. Cultivation of microalgae in dairy farm wastewater without sterilization. International Journal of Phytoremediation, 17: 222-227.
  • Dong, T., Knoshaug, E.P., Davis, R., Laurens, L.M.L., Van Wychen, S., Pienkos, P.T., and Nagle, N. 2016.
  • Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Research, 19: 316-323.
  • El-Holi, M.A., and Al-Delaimy, S. 2003. Citric acid production from whey with sugars and additives by Aspergillus niger. African Journal of Biotechnology, 2: 356-359.
  • Ergüder, T.H., Tezel, U., Güven, E., and Demirer, G.N. 2001. Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Management, 21: 643-650.
  • Faria, A., Gonçalves, L., Peixoto, J.M., Peixoto, L., Brito, A.G., and Martins, G. 2017. Resources recovery in the dairy industry: Bioelectricity production using a continuous microbial fuel cell. Journal of Cleaner Production, 140: 971-976.
  • Foda, M.I., Dong, H., and Li, Y. 2010. Study the suitability of cheese whey for bio-butanol production by Clostridia. Journal of American Science, 6: 39-46.
  • Ganju, S., and Gogate, P.R. 2017. A review on approaches for e cient recovery of whey proteins from dairy industry effluents. Journal of Food Engineering, 215: 84-96
  • Goli, A., Shamiri, A., Khosroyar, S., Talaiekhozani, A., Sanaye, R., and Azizi, K. 2019. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. Journal of Environmental Treatment Techniques, 6: 113-141.
  • Gomaa, E.Z. 2013. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Brazilian Archives of Biology and Technology, 56: 259-268.
  • Gil-Pulido, B., Tarpeyc, E., Almeidaa, E.L., Finneganc, W., Zhanc, X., Dobsona, A.D.W., et al. 2018. Evaluation of dairy processing wastewater biotreatment in an IASBR system: Aeration rate impacts on performance and microbial ecology. Biotechnology Reports, 19: e00263.
  • Hamawand, I., Sandell, G., Pittaway, P., Chakrabarty, S., Yusaf, T., Chen, G., Seneweera, S., Al-Lwayzy, S., Bennett, J., and Hopf, J. 2016. Bioenergy from cotton industry wastes: A review and potential. Renewable and Sustainable Energy Reviews, 66: 435-448.
  • Jaganmai, G., and Jinka, R. 2017. Production of lipases from dairy industry wastes and its applications. International Journal of Current Microbiological and Applied Sciences, 5, 67-73.
  • Justina, M.D., Muniz, B.R.B., Bröring, M.M., Costa, V.J., and Skoronski, E. 2018. Using vegetable tannin and polyaluminium chloride as coagulants for dairy wastewater treatment: A comparative study. Journal of Water Process Engineering, 25: 173-181.
  • Karthikeyan, V., Venkatesh, K.R., and Arutchelvan, V. 2015. A correlation study on physico-chemical characteristics of dairy wastewater. International Journal of Engineering Science and Technology, 7: 89.
  • Kasmi, M. 2016. Biological processes as promoting way for both treatment and valorization of dairy industry effluents. Waste and Biomass Valorization, 9: 1-15.
  • Key Note, 2015. Ice Creams and Frozen Desserts. Rechmond Upon Thames: Key Note.
  • Koller, M., Bona, R., Chiellini, E., Fernandes, E.G., Horvat, P., Kutschera, C., Hesse, P., and Braunegg, G. 2008. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technology, 99: 4854-4863.
  • Konstantas, A., Stamford, L., and Azapagic, A. 2019. Environmental impacts of ice cream. Journal of Cleaner Production, 209: 259-272.
  • Kothari, R., Pathak, V.V., Kumar, V., Singh, D.P., and Chee, M. 2012. Experimental study for growth potential of unicellular algal Chlorella pyrenoidosa on dairy waste water: An integrated approach for treatment and biofuel production. Bioresource Technology, 116: 466-470.
  • Kushwaha, J.P., Srivastava, V.C., and Mall, I.D. 2011. An overview of various technologies for the treatment of dairy wastewaters. Critical Reviews in Food Science and Nutrition, 51: 442-452.
  • Lu, W., Wang, Z., Wang, X., and Yuan, Z. 2015. Cultivation of Chlorella sp. using raw dairy waste water for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192: 382-388.
  • Mohan, S.V., Mohanakrishna, G., Velvizhi, G., Babu, V.L., and Sarma, P. N. 2010. Biocatalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochemical Engineering Journal, 51: 32-39.
  • Marangoni, C., Furigo, A., Jr., and de Aragão, G.M. 2002. Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochemistry, 38: 137-141.
  • Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., and Li, X. 2015. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste. Bioresource Technology, 179: 452-459.
  • Meng, Y., Luan, F., Yuan, H., Chen, X., and Li, X. 2017. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. Bioresource Technology, 224: 48-55.
  • Mesomo, M., Silva, M.F., Boni, G., Padilha, F.F., Mazutti, M., Mossi, A., de Oliveria, D., Cansian, R.L., Luccio, M.D., and Treichel, H. 2009. Xanthan gum produced by Xanthomonas campestris from cheese whey: Production optimisation and rheological characterisation. Journal of the Science of Food and Agriculture, 89: 2440-2445.
  • Minakshi, D., and Shilpa, V. 2012. Comparative analysis of bioethanol production from whey by different strains of immobilized thermotolerant yeast. International Journal Scientific Research Public, 2: 1-5.
  • Neves, L., Pereira, M.A., Mota, M., and Alves, M.M. 2009. Detection andquantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids. Bioresource Technology, 100: 91-96.
  • Ozcan, T., and Demiray-Teymuroglu, M. 2020. Bioactive components of milk fat globule membrane and technological applications. International Journal of Scientific and Technological Research, 8: 10-28.
  • Özdemir, T, and Özcan, T. 2019. Süt ürünlerinin mikro yapısının oluşumunda süt proteinlerinin önemi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 33: 355-374.
  • Ozmihci, S., and Kargi, F. 2007. Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology, 98: 2978-2984.
  • Pakalapati, H., Chang, C., Show, P.L., Arumugasamy, S.K., and Lan, Chi-Wei 2018. Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126: 282-292.
  • Pandian, S.R., Deepak, V., Kalishwaralal, K., Rameshkumar, N., Jeyaraj, M., and Gurunathan, S. 2010. Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresource Technology, 101: 705-711.
  • Panesar, P.S., Kumari, S., and Panesar, R. 2013. Biotechnological approaches for the production of prebiotics and their potential applications. Critical Reviews in Biotechnology, 33: 345-364.
  • Parrondo, J., Garcia, L.A., and Diaz, M. 2000. Production of an alcoholic beverage by fermentation of whey permeate with Kluyveromyces fragilis I: Primary metabolism. Journal of the Institute of Brewing, 106: 367-375.
  • Passero, M.L., Cragin, B., Hall, A.R., Staley, N., Coats, E.R., McDonald, A.G., et al. 2014. Ultraviolet radiation pre-treatment modifies dairy wastewater, improving its utility as a medium for algal cultivation. Algal Research, 6: 98-110.
  • Porwal, H.J., Mane, A.V., and Velhal, S.G. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry, 9: 1-15.
  • Prazeres, A.R., Carvalho, F., and Rivas, J. 2012. Cheese whey management: A review. Journal of Environmental Management, 110: 48-68.
  • Priyanka, B.S., and Rastogi, N.K. 2018. Downstream processing of lactoperoxidase from milk whey by involving liquid emulsion membrane. Preparative Biochemistry and Biotechnology, 48: 270-278.
  • Ricciardi, A., Parente, E., Crudele, M.A., Zanetti, F., Scolari, G., and Mannazzu, I. 2002. Exopolysaccharide production by Streptococcus thermophilus SY: Production and preliminary characterization of the polymer. Journal of Applied Microbiology, 92: 297-306.
  • Rosa, D.R., Duarte, I.C.S., Saavedra, N.K., Varesche, M.B., Zaiat, M., Cammarota, M.C., and Freire, D.M. 2009. Performance and molecular evaluation of an anaerobic system with suspended biomass for treating wastewater with high fat content after enzymatic hydrolysis. Bioresource Technology, 100: 6170-6176.
  • Rugele, K., Mezule, L., Dalecka, B., Larsson, S., Vangs, J., and Rubulis, J. 2013. Application of fluorescent in situ hybridisation for monitoring methanogenic archaea in acidwhey anaerobic digestion. Agronomy Research, 11, 373-380.
  • Santos, M., Rodrigues, A., and Teixeira, J.A. 2005. Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512 (f). Biochemical Engineering Journal, 25: 1-6.
  • Sarkar, B., Chakrabarti, P.P., Vijaykumar, A., and Kale, V. 2006. Wastewater treatment in dairy industries-possibility of reuse. Desalination, 195, 141-152.
  • Shete, B.S., and Shinkar, N.P. 2013. Dairy industry wastewater sources, characteristics and its effects on environment. International Journal of Current Engineering and Technology, 3: 1611-1615.
  • Singh, A.K., Singh, G., Gautam, D., and Bedi, M.K. 2013. Optimization of dairy sludge for growth of Rhizobium cells. BioMed research international, 845264.
  • Slavov, K.A. 2017. General characteristics and treatment possibilities of dairy wastewater-A review. Food Technology and Biotechnology, 55: 14-28.
  • Spalvins, K., Zihare, L., and Blumberga, D. 2018. Sigle cell protein production from waste biomass: Comparision of various industrial by-products. Energy Procedia, 147: 409-418.
  • Stefanakis, A., Akratos, C.S., and Tsihrintzis, V.A. 2014. Vertical flowconstructed wetlands: Eco-engineering systems for wastewater and sludge treatment. Elsevier, Amsterdam, Netherlands, 392 pp.
  • Verma, A., and Singh, A. 2017. Physico-chemical analysis of dairy industrial effluent. International Journal of Current Microbiological and Applied Sciences, 6: 1769-1775.
  • Vidal, G., Carvalho, A., Méndez, R., and Lema, J.M. 2000. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology, 74: 231-239.
  • Vlyssides, A.G., Tsimas, E.S., Barampouti, E.M.P., and Mai, S.T. 2012. Anaerobic digestion of cheese dairy wastewater following chemical oxidation. Biosystems Engineering, 113: 253-258.
  • Wan, C., Li, Y., Shahbazi, A., and Xiu, S. 2008. Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Applied Biochemical and Biotechnology, 145: 111-119.
  • Wong, Y.M., Show, P.L., Wu, T.Y., Leong, H.Y., Ibrahim, S., and Juan, J.C. 2018. Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum. Journal of Bioscience and Bioengineering, 127: 1-10.
APA Ozcan T, HARPUTLUGİL B (2021). Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. , 415 - 437.
Chicago Ozcan Tulay,HARPUTLUGİL BUKET TUĞÇE Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. (2021): 415 - 437.
MLA Ozcan Tulay,HARPUTLUGİL BUKET TUĞÇE Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. , 2021, ss.415 - 437.
AMA Ozcan T,HARPUTLUGİL B Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. . 2021; 415 - 437.
Vancouver Ozcan T,HARPUTLUGİL B Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. . 2021; 415 - 437.
IEEE Ozcan T,HARPUTLUGİL B "Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi." , ss.415 - 437, 2021.
ISNAD Ozcan, Tulay - HARPUTLUGİL, BUKET TUĞÇE. "Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi". (2021), 415-437.
APA Ozcan T, HARPUTLUGİL B (2021). Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online), 35(2), 415 - 437.
Chicago Ozcan Tulay,HARPUTLUGİL BUKET TUĞÇE Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online) 35, no.2 (2021): 415 - 437.
MLA Ozcan Tulay,HARPUTLUGİL BUKET TUĞÇE Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online), vol.35, no.2, 2021, ss.415 - 437.
AMA Ozcan T,HARPUTLUGİL B Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online). 2021; 35(2): 415 - 437.
Vancouver Ozcan T,HARPUTLUGİL B Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online). 2021; 35(2): 415 - 437.
IEEE Ozcan T,HARPUTLUGİL B "Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi." Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online), 35, ss.415 - 437, 2021.
ISNAD Ozcan, Tulay - HARPUTLUGİL, BUKET TUĞÇE. "Süt Endüstrisi Atıklarının Çevresel Etkileri ve Biyoteknolojik Olarak Değerlendirilmesi". Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi (Online) 35/2 (2021), 415-437.