Yıl: 2021 Cilt: 21 Sayı: 3 Sayfa Aralığı: 428 - 443 Metin Dili: İngilizce DOI: 10.5152/electr.2021.21008 İndeks Tarihi: 29-01-2022

Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer

Öz:
Today, with the increase of environmental awareness, the use of electric vehicles is increasing rapidly. For a comfortable ride, driving performance is desired to be effective on all roads, and the desired torque must be instantly achieved on the wheels while driving. Sudden torque can be obtained by the direct torque control (DTC) method with the space vector modulation technique, and hence, the performance of the structure can be increased. However, the desired performance cannot be obtained due to the straight, bumpy, or different slopes of the road that the electric vehicle travels. In previous studies, the variable road conditions of electric vehicles were not considered much. The vehicle’s performance response must be measured for all road conditions. In this study, a proposed method has been developed for performance enhancement, by using exponential stable Lypunov-based flux observer instead of classical flux estimator structure, eliminating the instability, torque, and current fluctuations in the vehicle’s motor control, and a more comfortable ride in downhill and uphill situations. The newly proposed observer structure was simulated in Matlab/Simulink environment and its performance was demonstrated.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. A. Ustabaş, “Mikro ve Makro etkileri Yönünden elektrikli otomobiller (Türkiye Ekonomisi Örneği),”Marmara Üniversitesi İ.İ.B Dergisi, vol. 36, no. 1, pp. 269–291, 2014.
  • 2. B. Singh, P. Jain, M. Alok and J. R. P. Gupta, Direct torque control: A practical approach to electric vehicle. Power India Conference, New Delhi, 2006.
  • 3. S. N. Tabanlı, Elektrikli Araçların Eğiımli Yollarda Oluşan Ani Moment İhtiyacını Karşılamak İçin Geliştirilmiş Uzay Vektör Modülasyonlu Doğrudan Moment Kontrolü [Master’s Thesis]. Antalya, Akdeniz Üniversitesi, 2017.
  • 4. M. Krstiċ, I. Kanellakopoulos ve P. Kokotoviċ, Nonlinear and Adaptive Control Design. New York, NY: Willey Interscience, 1995.
  • 5. H. K. Khalil and J. W. Grizzle, Nonlinear Systems. Upper Saddle River: Pren tice Hall, 2002.
  • 6. M. Oussaid, M. Cherkoui, A. Nejni and M. Maaroufi, “Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach,” World Acad. Sci. Eng. Technol., vol. 6, pp. 118–121, 2005.
  • 7. N. Kazantzis and C. Kravaris, “Nonlinear observer design using Lyapunov's auxiliary theorem,” Syst. Control Lett., vol. 34, no. 5, pp. 241–247, 1998.
  • 8. A. P. Molchanov, Lyapunov functions for nonlinear discrete-time control systems,” Avtomat. i Telemekh, vol. 6, pp. 26–35, 1986.
  • 9. A. S. I. Zinober, Variable Structure and Lyapunov Control. London: Springer-Verlag, 1994.
  • 10. A. Polyakov, D. Efimov and W. Perruquetti, “Finite-time stabilization using ImplicitLyapunov function technique,” FAC Nolcos, 2013.
  • 11. P. Vaclavek and P. Blaha, “Lyapunov-function-based flux and speed observer for AC induction motor sensorless control and parameters estimation,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 138 –145, 2006.
  • 12. M. Kim, B. Jung, B. Han, S. Lee and Y. Kim, “Lyapunov-based impact time control guidance laws against stationary targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1111 – 1122, 2015.
  • 13. A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed,J. Ghouiliand K. Srairi, “Comparative analysis of control techniques for efficiency improvement in electric vehicles,” IEEE VPPCAt, pp. 629–634, 2007.
  • 14. A. Ahriche, M. Kıdouche, A. Idır and Y. Deıa, “Combınıng sliding mode and second Lyapunov Functıon for flux Estımation.” Rev. Roum. Sci. Techn.–Électrotechn. et Énerg., vol. 61, no. 2, pp. 106–110, 2016.
  • 15. Y. Luo, X. Zheng, C. Liao and Y. Kuo, “Direct torque control induction motor drive for speed estimation using modified particle swarm optimization algorithm,” Sens. Mater., vol. 32, no. 6, pp. 1955–1967, 2020.
  • 16. M. A. Salahmanesh, H. A. Zarchi and H. Mosaddegh, “Lyapunovbased input-output feedback linearization control of induction motor drives considering online MTPA strategy and iron loss,” 27th Iran. Conference on Electrical Engineering (ICEE2019), pp. 697–701, 2019.
  • 17. A. Venkatesh, “An improved adaptive smo for speed estimation of sensorless Dsfoc induction motor drives and stability analysis using Lyapunov theorem at low frequencies,” Int. J. Eng. Res. Technol. (IJERT), vol. 8, no. 9, pp. 246–253, 2019.
  • 18. L. Chen, J. Wang, Y. Cai, D. Shi and A. R. Wang, “Mode transition control of a power-split hybrid electric vehicle based on improved extended state observer,” IEEE Access, vol. 8, pp. 207260– 207274, 2020.
  • 19. A. Nguyen, J. Rath, T. Guerra, R. Palhares and H. Zhang, “Robust Set-Invariance Based Fuzzy Output Tracking Control for Vehicle Autonomous Driving Under Uncertain Lateral Forces and Steering Constraints,” IEEE Trans. Intell. Transport. Syst., pp. 1–2, 2020.
  • 20. A. Nguyen, T. Guerra, C. Sentouh and H. Zhang, “Unknown input observers for simultaneous estimation of vehicle dynamics and driver torque: Theoretical design and hardware experiments,” IEEE ASME Trans. Mechatron., vol. 24, no. 6, pp. 2508–2518, 2019.
  • 21. A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouiliand K. Srairi, “A loss-minimization DTC scheme for EV induction motors,” IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 81–88, 2007.
  • 22. A. H. Arif, A. Betka and A. Guettaf, “Improvement The DTC System for Electric Vehicles induction Motors,” Serb. J. Electr. Eng., vol. 7, no. 2, pp. 149–165, 2010.
  • 23. U. Kitiş, Değişken yol şartlarinda elektrikli araçlarin anlik moment ihtiyacinin lyapunov tipi bir gözlemleyici ile tespiti ve kontrolü [Master’s Thesis]. Antalya, Akdeniz Üniversitesi, 2020.
  • 24. Y. Üser, Asenkron motorda moment dalgalanmasinin ve elektromanyetik gürültünün kontrolü için yeni bir kontrol yaklaşimı [Doctoral Thesis]. İstanbul, Yıldız Teknik Üniversitesi, 2012.
  • 25. K. Zhou and D. Wang, “Relationship between space-vector Modulationand three-phase carrier-based PWM: A comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, 2002.
  • 26. Ç. Gençer, “Vektör Kontrollü Fırçasız DA Motorun İki Seviyeli Evirici ile Uzay Vektör Modülasyonu,” Fırat Univ. Doğu Araştırmaları Derg., vol. 3, no. 2, pp. 132–137, 2005.
  • 27. F. Khoucha, K. Marouani, A. Kheloui and M. Benbouzid, “Electric vehicle induction motor DSVM-DTC with torque ripple minimization,” Int. Rev. Electr. Eng. Praise Worthy Prize, vol. 4, no. 3, pp. 501–508, 2009.
  • 28. T. G. Habetler, F. Profuma, Pastorelli and M., Tolbert L.M., Direct torque control of induction machines using space vector modulation. IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1045–1053, 1992.
  • 29. F. B. Salem and N. Derbel, VSC-based DTC-SVM with adaptive parameter estimation, 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), pp. 1–7, 2014.
  • 30. S. K. Sahoo, S. Dasgupta, S. K. Panda and J. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 555–564, 2012.
  • 31. G. Buja, D. Casadei and G. Serra, “Direct torque control of induction motor drives. ISIE,” Proceeding of the IEEE International Symposium on Industrial Electronics, Guimaraes, vol. 97, pp. TU2– TU8, 1997.
  • 32. A. Ouarda and F. B. Salem, 2013, “Induction machine DTC-SVM: A comparison between two approaches,” 10th International MultiConference on Systems, Signals & Devices (SSD), pp 18–21, 2013.
  • 33. H. Farhan Rashag, N. M.L. Tan, S. P. Koh, A. N. Abdalla, K. H. Chong and S. K. Tiong, “DTC-SVM based on PI torque and PI flux controllers to achieve high performance of induction motor,” Res. J. Appl. Sci. Eng. Technol., vol. 7, no. 4, pp. 875–891, 2014.
  • 34. Z. Youcef and B. Lakhdar, “Feedback DTC-SVM based a fractional pi controller: Applied to Rotor's speed of induction motor,” Research Journal of Applied Sciences, Engineering and Technology, vol. 26, pp. 378–383, 2014.
  • 35. J. Böcker, J. Janning and K. Anbuhl, “Realization of a high-dynamic discrete-time controller for PWM inverter-fed induction motor drives” Fifth Eur. Conference on Power Electronics and Applications, vol. 4, 1993, 1991.
  • 36. E. Zergeroğlu, İ. Kandemir, M. Şeker and E. Eroğlu, “Kontrol Sistemlerinde Belirsizlikle baş etme Yöntemleri: Lyapunov tarzı Yaklaşımlar,” J. Fac. Eng. Arch. Gazi Univ., vol. 21, no. 3, pp. 587–602, 2006.
  • 37. J. Jung, Space Vector PWM Inverter. OH: Mechatronic Systems Laboratory Department of Electrical and Computer Engineering The Ohio State University, 2005.
  • 38. K. Jezernik, “Nonlinear torque control for PMSM”. 15th IEEE mediterr. Electrotechn. Conference, pp. 784–789, 2000.
APA Kitiş U, user y (2021). Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. , 428 - 443. 10.5152/electr.2021.21008
Chicago Kitiş Umut,user yavuz Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. (2021): 428 - 443. 10.5152/electr.2021.21008
MLA Kitiş Umut,user yavuz Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. , 2021, ss.428 - 443. 10.5152/electr.2021.21008
AMA Kitiş U,user y Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. . 2021; 428 - 443. 10.5152/electr.2021.21008
Vancouver Kitiş U,user y Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. . 2021; 428 - 443. 10.5152/electr.2021.21008
IEEE Kitiş U,user y "Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer." , ss.428 - 443, 2021. 10.5152/electr.2021.21008
ISNAD Kitiş, Umut - user, yavuz. "Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer". (2021), 428-443. https://doi.org/10.5152/electr.2021.21008
APA Kitiş U, user y (2021). Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. Electrica, 21(3), 428 - 443. 10.5152/electr.2021.21008
Chicago Kitiş Umut,user yavuz Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. Electrica 21, no.3 (2021): 428 - 443. 10.5152/electr.2021.21008
MLA Kitiş Umut,user yavuz Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. Electrica, vol.21, no.3, 2021, ss.428 - 443. 10.5152/electr.2021.21008
AMA Kitiş U,user y Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. Electrica. 2021; 21(3): 428 - 443. 10.5152/electr.2021.21008
Vancouver Kitiş U,user y Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer. Electrica. 2021; 21(3): 428 - 443. 10.5152/electr.2021.21008
IEEE Kitiş U,user y "Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer." Electrica, 21, ss.428 - 443, 2021. 10.5152/electr.2021.21008
ISNAD Kitiş, Umut - user, yavuz. "Determination and Control of the Instant Moment Need of Electric Vehicles in Variable Road Conditions With a Lyapunov-based Flux Observer". Electrica 21/3 (2021), 428-443. https://doi.org/10.5152/electr.2021.21008