Yıl: 2021 Cilt: 74 Sayı: 1 Sayfa Aralığı: 1 - 9 Metin Dili: Türkçe DOI: 10.4274/atfm.galenos.2021.09815 İndeks Tarihi: 31-01-2022

Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme

Öz:
Manyetik rezonans görüntüleme (MRG), hem tanısal araç hem de araştırma yöntemi olarak günümüzde sıklıkla kullanılmaktadır. Farklı MRG yöntemlerinin gelişmesi ve uygulamalarının kolaylaşması, araştırmacıların sinirbilim araştırmalarına farklı yaklaşımlarda bulunmasını sağlamıştır. Bu bağlamda beyin görüntülemelerinde bağlantısallık çalışmaları son zamanlarda araştırma, klinik ve cerrahi alanlarda giderek daha fazla kullanılmaktadır. MRG kullanılarak yapılan bağlantısallık yöntemleri arasında dinlenim durumu işlevsel MRG, difüzyon tensör görüntüleme ve traktografi ön plana çıkmaktadır. Bu yöntemlerle beyin bölgeleri arasındaki yapısal bağlantılar kadar işlevsel olarak bölgeler arasındaki ilişkiler de gösterilebilmekte ve incelenebilmektedir. Her yeni yöntemde olduğu gibi bu yöntemlerin de avantajları ve dezavantajları bulunmakta ve özellikle klinik alanda henüz çok yaygın kullanılmamaktadır. Ancak bu yöntemlerin giderek kolaylaşması ve ulaşılabilirliğinin artması, bağlantısallık yöntemlerinin sinirbilim alanında yaygınlaşmasını ve klinik uygulanabilirliğin sağlanmasını mümkün kılmaktadır.
Anahtar Kelime:

Structural and Functional Connectivity in Brain Imaging: Resting State Magnetic Resonance Imaging and Diffusion Tensor Imaging

Öz:
Magnetic resonance imaging (MRI) is being widely used both as a diagnostic tool and a research method. With the advancement and easy use of various MRI methods, researchers have started to use different approaches to neuroscience research. In this context, connectivity has become one of the most used methods for brain imaging in research, clinical and surgical fields. Resting state functional magnetic resonance imaging, diffusion tensor imaging and tractography stand out among different connectivity methods involving MRI. With these applications, not only structural connections between different brain areas, but also functional connections can be shown and evaluated. Similar to other new methods, there are several advantages and disadvantages of these methods, as well as limited usage in clinics. However, with the increasing simplicity and attainability, connectivity methods can be conventionalized and clinical applicability can be provided.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Jeurissen B, Descoteaux M, Mori S, et al. Diffusion MRI fiber tractography of the brain. NMR Biomed. 2019;32:e3785.
  • 2. Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537-541.
  • 3. Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673-9678.
  • 4. Glasser MF, Smith SM, Marcus DS, et al. The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19:1175-1187.
  • 5. Bijsterbosch J, Smith SM, Beckmann CF. Introduction. In Introduction to resting statef MRI functional connectivity. Oxford, New York: Oxford University Press. 2017.
  • 6. Yang J, Gohel S, Vachha B. Current methods and new directions in resting state fMRI. Clin Imaging. 2020;65:47-53.
  • 7. Lowe MJ, Mock BJ, Sorenson JA. Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations. NeuroImage. 1998;7:119-132.
  • 8. Shulman GL, Fiez JA, Corbetta M, et al. Common Blood Flow Changes across Visual Tasks: I. İncreases in Subcortical structures and Cerebellum but Now in Nonvisual Cortex. J Cog Neurosci. 1997;9:624-647.
  • 9. Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brain function. Proceedings of the National Academy of Sciences. 2001;98:676-682.
  • 10. Gusnard, DA, Raichle, ME. Searching for a baseline: Functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001;2:685-694.
  • 11. Raichle ME. The restless brain. Brain Connect. 2011;1:3-12.
  • 12. Ward LM. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci. 2003;7:553-559.
  • 13. Wang Y, Long Z, Cui Q, et al. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means. Hum. Brain. Mapp. 2016;37:381-394.
  • 14. Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience. 2010;4.
  • 15. Beckmann CF, Deluca M, Devlin JT, Smith SM. Investigations into restingstate connectivity usingin dependent component analysis. Philos. T. R. Soc. B. 2005;360:1001-1013.
  • 16. Tomasi D, Volkow ND. Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry. 2012;17:841-854.
  • 17. Smith V, Mitchell DJ, Duncan J. Role of the Default Mode Network in Cognitive Transitions. Cereb Cortex. 2018;28:3685-3696.
  • 18. Mwansisya TE, Hu A, Li Y, et al. Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophrenia Research. 2017;189;9-18.
  • 19. Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? Neuroimage Clin. 2018;18:849-870.
  • 20. Zhang Z, Zhou X, Liu J, et al. Longitudinal assessment of resting-statef MRI in temporal lobe epilepsy: A two-year follow-up study. Epilepsy&Behavior. 2020;103:106858.
  • 21. Guerra-Carrillo B, Mackey AP, Bunge SA. Resting-state fMRI: A window into human brain plasticity. Neuroscientist. 2014;20:522-533.
  • 22. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: A review of methods and clinical applications. AJNR Am J Neuroradiol. 2013;34:1866-1872.
  • 23. Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J. 2017;30:305-317.
  • 24. Liu H, Buckner RL, Talukdar T, et al. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg. 2009;111:746-754.
  • 25. Kokkonen SM, Nikkinen J, Remes J, et al. Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magn Reson Imaging. 2009;27:733-740.
  • 26. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18-27.
  • 27. Zhang D, Johnston JM, Fox MD, et al. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery. 2009;65:226-236.
  • 28. Kokkonen SM, Kiviniemi V, Makiranta M. Effect of brain surgery on auditory and motor cortex activation: A preliminary functional magnetic resonance imaging study. Neurosurg. 2005;57:249-256.
  • 29. Bettus G, Bartolomei F, Confort-Gouny S. Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2010;81:1147-1154.
  • 30. Stufflebeam SM, Liu H, Sepulcre J, et al. Localization of focal epileptic discharges using functional connectivity magnetic resonance imaging. J Neurosurg. 2011;114:1693-1697.
  • 31. Zhang X, Tokoglu F, Negishi M, et al. Social network theory applied to resting-state fMRI connectivity data in the identification of epilepsy networks with iterative feature selection. J Neurosci Methods. 2011;199:129-139.
  • 32. Pizoli CE, Shah MN, Snyder AZ, et al. Resting-state activity in development and maintenance of normal brain function. Proc Natl Acad Sci U S A. 2011;108:11638-11643.
  • 33. Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008;4:e1000100.
  • 34. Koch W, Teipel S, Mueller S, et al. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiol Aging. 2012;33:466-478.
  • 35. Dai Z, Yan C, Wang Z, et al. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neurolmage. 2012;59:2187-2195.
  • 36. Chen G, Ward BD, Xie C, et al. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology. 2011;259:213-221.
  • 37. Zhou J, Greicius MD, Gennatas ED, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133:1352-1367.
  • 38. Li SJ, Li Z, Wu G, et al. Alzheimer Disease: evaluation of a functional MR imaging index as a marker. Radiology. 2002;225:253-259.
  • 39. Craddock RC, Holtzheimer PE, Hu XP, et al. Disease state prediction from resting state functional connectivity. Magn Reson Med. 2009;62:1619-1628.
  • 40. Bassett DS, Nelson BG, Mueller BA, et al. Altered resting state complexity in schizophrenia. Neuroimage. 2012;59:2196-2207.
  • 41. Shen H, Wang L, Liu Y, et al. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage. 2010;49:3110-3121.
  • 42. Anderson JS, Nielsen JA, Froehlich AL, et al. Functional connectivity magnetic resonance imaging classification of autism. Brain. 2011;134:3742-3754.
  • 43. Zhu CZ, Zang YF, Cao QJ, et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage. 2008;40:110-120.
  • 44. Harrewijn A, Abend R, Linke J, et al. Combining fMRI during resting state and an attention bias task in children. Neuroimage. 2020;205:116301.
  • 45. Whitford TJ, Kubicki M, Shenton ME. Diffusion tensor imaging, structura lconnectivity, and schizophrenia. Schizophr Res Treatment. 2011:709023.
  • 46. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534-546.
  • 47. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15:435-455.
  • 48. Van Hecke W, Emsell L, Sunaert S. Diffusion tensor imaging: A practical handbook. Springer. 2015.
  • 49. Filograna L, Magarelli N, Cellini F, et al. Diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) values for detection of malignant vertebral bone marrow lesions. Eur Rev Med Pharmacol Sci. 2018;22:590-597.
  • 50. Huettel SA, Song AW, McCarthy G. Functional magnetic resonance imaging 3rd Ed. Sunderland, MA: Sinauer Associates. 2014.
  • 51. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51:527-539.
  • 52. Porter EJ, Counsell SJ, Edwards AD, et al. Tract-baseds patial statistics of magnetic resonance images to assess disease and treatment effects in perinatal asphyxial encephalopathy. Pediatr. Res. 2010;68:205-209.
  • 53. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neurolmage. 2006;31:1487-1505.
  • 54. Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316-329.
  • 55. Nimsky C, Bauer M, Carl B. Merits and Limits of Tractography Techniques for the Uninitiated. Advances and technical standards in neurosurgery. 2016;43:37-60.
  • 56. Cotten A, Haddad F, Hayek G, et al. Tractography: Possible Applications in Musculoskeletal Radiology. Semin Musculoskelet Radiol. 2015;19:387-395.
  • 57. Jeurissen B, Descoteaux M, Mori S, et al. Diffusion MRI fiber tractography of the brain. NMR Biomed. 2019;32:e3785.
  • 58. Behrens TEJ, Sotiropoulos SN, Jbabdi S. MR Diffusion Tractography. Diffusion MRI. 2014;429-451.
  • 59. Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239-254.
  • 60. Mori S, Zijl PC. Fiber tracking: Principles and strategies - a technical review. NMR in Biomedicine. 2002;15:468-480.
  • 61. St-Onge E, Daducci A, Girard G, et al. Surface-enhanced tractography (SET). Neuroimage. 2018;169:524-539.
  • 62. Yeh CH, Smith RE, Dhollander T, et al. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential. NeuroImage. 2019;199:160-171.
  • 63. Assaf Y, Johansen-Berg H, Thiebaut de Schotten M. The role of diffusion MRI in neuroscience. NMR Biomed. 2019;32:e3762.
  • 64. Jbabdi S, Woolrich MW, Andersson JL, et al. A Bayesian framework for global tractography. Neuroimage. 2007;37:116-129.
  • 65. Christiaens D, Reisert M, Dhollander T, et al. Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. Neuroimage. 2015;123:89-101.
  • 66. Watson CG, DeMaster D, Ewing-Cobbs L. Graph theory analysis of DTI tractography in children with traumatic injury. Neuroimage Clin. 2019;21:101673.
  • 67. Reisert M, Mader I, Anastasopoulos C, et al. Global fiber reconstruction becomes practical. Neuroimage. 2011;54:955-962.
  • 68. Schilling KG, Nath V, Hansen C, et al. Limits to anatomical accuracy of diffusion tractography using modern approaches. Neuro Image. 2019;185:1- 11.
  • 69. Buchbinder BR. Functional magnetic resonance imaging. Handb Clin Neurol. 2016;135:61-92.
  • 70. Giraldo-Chica M, Rogers BP, Damon SM, et al. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biol Psychiatry. 2018;83:509-517.
  • 71. Deng Y, Hung KSY, Lui SSY, et al. Tractography-based classification in distinguishing patients with first-episode schizophrenia from healthy individuals. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:66-73.
  • 72. Gómez-Gastiasoro A, Zubiaurre-Elorza L, Peña J, et al. Altered frontal white matter asymmetry and its implications for cognition in schizophrenia: A tractography study. Neuroimage Clin. 2019;22:101781.
  • 73. Sako W, Abe T, Izumi Y, et al. Deterministic-tractography-based approach for diagnosis and disease monitoring of a myotrophic lateral sclerosis. Clin. Neurol. Neurosurg. 2019;181;73-75.
  • 74. Catani M, Dell’Acqua F, Budisavljevic S, et al. Frontal networks in adults with autism spectrum disorder. Brain. 2016;139:616-630.
  • 75. Szmuda M, Szmuda T, Springer J, et al. Diffusion tensor tractography imaging in pediatric epilepsy - A systematic review. Neurol Neurochir Pol. 2016;50:1-6.
  • 76. Essayed W, Zhang F, Unadkat P, et al. White matter tractography for neurosurgical planning: A topography-basedreview of the current state of the art. NeuroImage: Clinical. 2017;15:659-672.
  • 77. Panesar SS, Abhinav K, Yeh FC, et al. Tractography for Surgical Neuro- Oncology Planning: Towards a Gold Standard. Neurotherapeutics. 2019;16:36-51.
  • 78. Callaghan F, Maller JJ, Welton T, et al. Toward personalised diffusion MRI in psychiatry: Improved delineation of fibre bundles with the highest-ever angular resolution in vivo tractography. Transl. Psychiatry. 2018;8:91.
  • 79. Yeh FC, Zaydan IM, Suski VR, et al. Differential tractography as a trackbased biomarker for neuronal injury. Neuroimage. 2019;202:116131.
  • 80. Zayed A, Iturria-Medina Y, Villringer A, et al. Rapid Quantification of White Matter Disconnection in the Human Brain. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1701-1704.
  • 81. Craig BT, Hilderley A, Kinney-Lang E, et al. Developmental neuroplasticity of the white matter connectome in children with perinatal stroke. Neur. 2020;95:18.
  • 82. Zhang Y, Vakhtin AA, Jennings JS, et al. Diffusion tensor tractography of brainstem fibers and its application in pain. PLoS One. 2020;19:e0213952.
APA Şimşek H, İnal Ş, Meco B, Çiçek M (2021). Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. , 1 - 9. 10.4274/atfm.galenos.2021.09815
Chicago Şimşek Hazal,İnal Şayeste Çağıl,Meco Basak Ceyda,Çiçek Metehan Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. (2021): 1 - 9. 10.4274/atfm.galenos.2021.09815
MLA Şimşek Hazal,İnal Şayeste Çağıl,Meco Basak Ceyda,Çiçek Metehan Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. , 2021, ss.1 - 9. 10.4274/atfm.galenos.2021.09815
AMA Şimşek H,İnal Ş,Meco B,Çiçek M Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. . 2021; 1 - 9. 10.4274/atfm.galenos.2021.09815
Vancouver Şimşek H,İnal Ş,Meco B,Çiçek M Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. . 2021; 1 - 9. 10.4274/atfm.galenos.2021.09815
IEEE Şimşek H,İnal Ş,Meco B,Çiçek M "Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme." , ss.1 - 9, 2021. 10.4274/atfm.galenos.2021.09815
ISNAD Şimşek, Hazal vd. "Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme". (2021), 1-9. https://doi.org/10.4274/atfm.galenos.2021.09815
APA Şimşek H, İnal Ş, Meco B, Çiçek M (2021). Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 74(1), 1 - 9. 10.4274/atfm.galenos.2021.09815
Chicago Şimşek Hazal,İnal Şayeste Çağıl,Meco Basak Ceyda,Çiçek Metehan Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. Ankara Üniversitesi Tıp Fakültesi Mecmuası 74, no.1 (2021): 1 - 9. 10.4274/atfm.galenos.2021.09815
MLA Şimşek Hazal,İnal Şayeste Çağıl,Meco Basak Ceyda,Çiçek Metehan Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. Ankara Üniversitesi Tıp Fakültesi Mecmuası, vol.74, no.1, 2021, ss.1 - 9. 10.4274/atfm.galenos.2021.09815
AMA Şimşek H,İnal Ş,Meco B,Çiçek M Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2021; 74(1): 1 - 9. 10.4274/atfm.galenos.2021.09815
Vancouver Şimşek H,İnal Ş,Meco B,Çiçek M Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2021; 74(1): 1 - 9. 10.4274/atfm.galenos.2021.09815
IEEE Şimşek H,İnal Ş,Meco B,Çiçek M "Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme." Ankara Üniversitesi Tıp Fakültesi Mecmuası, 74, ss.1 - 9, 2021. 10.4274/atfm.galenos.2021.09815
ISNAD Şimşek, Hazal vd. "Beyin Görüntülerinde Yapısal ve İşlevsel Bağlantısallık: Dinlenim Durumu İşlevsel Manyetik Rezonans Görüntüleme ve Difüzyon Tensör Görüntüleme". Ankara Üniversitesi Tıp Fakültesi Mecmuası 74/1 (2021), 1-9. https://doi.org/10.4274/atfm.galenos.2021.09815