Yıl: 2021 Cilt: 43 Sayı: 3 Sayfa Aralığı: 214 - 220 Metin Dili: İngilizce DOI: 10.14744/etd.2021.65289 İndeks Tarihi: 06-02-2022

A Transgenerational Genetic Marker of the AutismSpectrum Disorder

Öz:
Autism spectrum disorder (ASD) is an increasingly frequent neurodevelopmental disorder. A number of indications recentlypointed to abnormal distributions of microRNAs (miRNAs) in autistic patients. The noncoding regulatory miRNAs are abun dant in the developing brain and abnormal levels of expression of several of them were found in tissues of ASD patients.Here, we discuss the previously published results and compare them with our recent data identifying 6 miRNAs whose bloodlevels are downregulated in ASD patients. A similar although less pronounced decrease is hereditarily transmitted by theclinically unaffected parents of sick children and the sibling. Robustness of the finding was confirmed by similarly low levels ofthe six microRNAs in two established mouse models of the disease. Several hopeful avenues of research may be consideredfrom these results including molecular mechanisms from the regulation of the miRNAs to the identification of their targetgenes and the non-Mendelian mode of inheritance of the autism-prone state. On the clinical side, they offer the possibility ofa very early detection of the affected children.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Iakoucheva LM, Muotri AR, Sebat J. Getting to the cores of autism. Cell 2019; 178(6): 1287–98.
  • 2. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study ımplicates both developmental and functional changes in the neurobiology of autism. Cell 2020; 80(3): 568–84.e23.
  • 3. Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psychiatry 2016; 7: 176.
  • 4. Auerbach BD, Osterweil EK, Bear MF. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 2011; 480(7375): 63–8.
  • 5. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 2012; 151(7): 1431–42.
  • 6. Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron 2016; 89: 940–7.
  • 7. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 2020; 586(7827): 80–6.
  • 8. Glessner JT, Connolly JJ, Hakonarson H. Genome-wide association studies of autism. Curr Behav Neurosci Rep 2014; 1: 234–41.
  • 9. Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251: 95–112.
  • 10. Ozkul Y, Taheri S, Bayram KK, Sener EF, Mehmetbeyoglu E, Öztop DB, et al. A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 2020; 10(1): 9011.
  • 11. Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: A decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 2011; 156B(3): 255–74.
  • 12. Schmitz-Abe K, Sanchez-Schmitz G, Doan RN, Hill RS, Chahrour MH, Mehta BK, et al. Homozygous deletions implicate non-coding epigenetic marks in Autism spectrum disorder. Sci Rep 2020; 10(1): 14045.
  • 13. Sztainberg Y, Zoghbi HY. Lessons learned from studying syndromic autism spectrum disorders. Nat Neurosci 2016; 19(11): 1408–17.
  • 14. Casanova EL, Sharp JL, Chakraborty H, Sumi NS, Casanova MF. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Mol Autism 2016; 7: 18.
  • 15. Kotu V, Deshpande B. Association analysis. Data Science, Concepts and Practice. 2nd edition. Morgan Kaufmann, 2019.
  • 16. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–97.
  • 17. Bartel DP. Metazoan microRNAs. Cell 2018; 173(1): 20–51.
  • 18. Shi CY, Kingston ER, Kleaveland B, Lin DH, Stubna MW, Bartel DP. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 2020; 370(6523): eabc9359.
  • 19. Han J, LaVigne CA, Jones BT, Zhang H, Gillett F, Mendell JT. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 2020; 370(6523): eabc9546.
  • 20. Ghini F, Rubolino C, Climent M, Simeone I, Marzi MJ, Nicassio F. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat Commun 2018; 9(1): 3119.
  • 21. Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory rnas acts in the mammalian brain. Cell 2018; 174(2): 350–62.e17.
  • 22. Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 2013; 6: 39.
  • 23. Anitha A, Thanseem I. MicroRNA and autism. İn: Advances in Experimental Medicine and Biology. Vol. 888. New York: Springer; 2015. p. 71–83.
  • 24. Rajman M, Schratt G. MicroRNAs in neural development: From master regulators to fine-tuners. Development 2017; 144(13): 2310–22.
  • 25. Da Silva Vaccaro T, Sorrentino JM, Salvador S, Veit T, Souza DO, de Almeida RF. Alterations in the microRNA of the blood of autism spectrum disorder patients: Effects on epigenetic regulation and potential biomarkers. Behav Sci (Basel) 2018; 8(8): 75.
  • 26. Huang H. Investigation of Gene Regulatory Network Search Results; 2015. Available from: URL: https://www.pubmed.ncbi.nlm.nih.gov /?term=huang%2c 2015 ınvestigation of gene regulatory network&- page=1&pos=1.
  • 27. Nakata M, Kimura R, Funabiki Y, Awaya T, Murai T, Hagiwara M. MicroRNA profiling in adults with high-functioning autism spectrum disorder. Mol Brain 2019; 12: 5–9.
  • 28. Vasu MM, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, et al. Serum microRNA profiles in children with autism. Mol Autism 2014; 5: 40.
  • 29. Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 2016; 16: 52.
  • 30. Gessert S, Bugner V, Tecza A, Pinker M, Kühl M. FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development. Dev Biol 2010; 341(1): 222–35.
  • 31. Ma Y, Tian S, He S, Chen Q, Wang Z, Xiao X, et al. The mechanism of action of FXR1P-related miR-19b-3p in SH-SY5Y. Gene 2016; 588(1): 62–8.
  • 32. Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, et al. Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. PLoS One 2015; 10(6): e0129052.
  • 33. Grandjean V, Fourré S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 2015; 5: 18193.
  • 34. Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M, et al. Clustering autism: Using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry 2015; 20(1): 118–25.
  • 35. Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav 2016; 15(1): 7–26.
  • 36. De Rubeis S, Buxbaum JD. Genetics and genomics of autism spectrum disorder: Embracing complexity. Hum Mol Genet 2015; 24(R1): R24–31.
  • 37. Liu L, Lei J, Sanders SJ, Willsey AJ, Kou Y, Cicek AE, et al. DAWN: A framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism 2014; 5: 22.
  • 38. Hua R, Wei MP, Zhang C. The complex genetics in autism spectrum disorders. Sci China Life Sci 2015; 58: 933–45.
  • 39. He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JA, et al. Integrated model of de novo and ınherited genetic variants yields greater power to ıdentify risk genes. PLoS Genet 2013; 9(8): e1003671.
  • 40. Vorstman JA, Parr JR, Moreno-De-Luca D, Anney RJ, Nurnberger Jİ Jr., Hallmayer JF. Autism genetics: Opportunities and challenges for clinical translation. Nat Rev Genet 2017; 18(6): 362–76.
  • 41. Tonacci A, Bagnato G, Pandolfo G, Billeci L, Sansone F, Conte R, et al. MicroRNA cross–ınvolvement in autism spectrum disorders and atopic dermatitis: A literature review. J Clin Med 2019; 8(1): 88.
  • 42. Hu VW. From Genes to Environment: Using İntegrative Genomics to Build a “Systems Level” Understanding of Autism Spectrum Disorders Integrative Genomics: Constructing a Molecular Framework for a “Systems Level” Understanding of Autism Rationale for a Phenot, No. 2001; 2010.
  • 43. Mutlu-Albayrak H, Bulut C, Çaksen H. Fetal valproate syndrome. Pediatr Neonatol 2017; 58(2): 158–64.
  • 44. Nagode DA, Meng X, Winkowski DE, Smith E, Khan-Tareen H, Kareddy V, et al. Abnormal development of the earliest cortical circuits in a mouse model of autism spectrum disorder. Cell Rep 2017; 18(5): 1100–8.
  • 45. Schneider T, Przewłocki R. Behavioral alterations in rats prenatally to valproic acid: Animal model of autism. Neuropsychopharmacology 2005; 30(1): 80–9.
  • 46. Nau H, Hauck RS, Ehlers K. Valproic acid-induced neural tube defects in mouse and human: Aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol 1991; 69(5): 310–21.
  • 47. Hara Y, Ago Y, Takano E, Hasebe S, Nakazawa T, Hashimoto H, et al. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Mol Autism 2017; 8: 33.
  • 48. Mabunga DF, Gonzales EL, Kim J, Kim KC, Shin CY. Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 2015; 24(4): 285–300.
  • 49. Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of preand post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8: 199.
  • 50. Al-Tawashi A, Jung SY, Liu D, Su B, Qin J. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. J Biol Chem 2012; 287(18): 14644–58.
  • 51. Raymond FL, Tarpey P. The genetics of mental retardation. Hum Mol Genet 2006; 15(Spec No 2): R110–6.
  • 52. Zhao M, Raingo J, Chen ZJ, Kavalali ET. Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. J Neurophysiol 2011; 105(4): 1506–15.
  • 53. Bennett ST, Wilson AJ, Esposito L, Bouzekri N, Undlien DE, Cucca F, et al. Insulin VNTR allele-specific effect in Type 1 diabetes depends on identity of untransmitted paternal allele. Nat Genet 1997; 17(3): 350–2.
  • 54. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014; 17(5): 667–9.
  • 55. Skinner MK, Guerrero-Bosagna C. Environmental signals and transgenerational epigenetics. Epigenomics 2009; 1(1): 111–7.
  • 56. Nilsson EE, Skinner MK. Environmentally induced epigenetic transgen erational inheritance of disease susceptibility. Transl Res 2015; 165(1): 12–7.
  • 57. Choi CS, Gonzales EL, Kim KC, Yang SM, Kim JW, Mabunga DF, et al. The transgenerational inheritance of autism–like phenotypes in mice exposed to valproic acid during pregnancy. Sci Rep 2016; 6: 36250.
  • 58. Zhang Y, Shi J, Rassoulzadegan M, Tuorto F, Chen Q. Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol 2019; 15: 489–9.
APA RASSOULZADEGAN M, TAHER S, CUZİN F, ÖZKUL Y (2021). A Transgenerational Genetic Marker of the AutismSpectrum Disorder. , 214 - 220. 10.14744/etd.2021.65289
Chicago RASSOULZADEGAN Minoo,TAHER Serpil,CUZİN François,ÖZKUL Yusuf A Transgenerational Genetic Marker of the AutismSpectrum Disorder. (2021): 214 - 220. 10.14744/etd.2021.65289
MLA RASSOULZADEGAN Minoo,TAHER Serpil,CUZİN François,ÖZKUL Yusuf A Transgenerational Genetic Marker of the AutismSpectrum Disorder. , 2021, ss.214 - 220. 10.14744/etd.2021.65289
AMA RASSOULZADEGAN M,TAHER S,CUZİN F,ÖZKUL Y A Transgenerational Genetic Marker of the AutismSpectrum Disorder. . 2021; 214 - 220. 10.14744/etd.2021.65289
Vancouver RASSOULZADEGAN M,TAHER S,CUZİN F,ÖZKUL Y A Transgenerational Genetic Marker of the AutismSpectrum Disorder. . 2021; 214 - 220. 10.14744/etd.2021.65289
IEEE RASSOULZADEGAN M,TAHER S,CUZİN F,ÖZKUL Y "A Transgenerational Genetic Marker of the AutismSpectrum Disorder." , ss.214 - 220, 2021. 10.14744/etd.2021.65289
ISNAD RASSOULZADEGAN, Minoo vd. "A Transgenerational Genetic Marker of the AutismSpectrum Disorder". (2021), 214-220. https://doi.org/10.14744/etd.2021.65289
APA RASSOULZADEGAN M, TAHER S, CUZİN F, ÖZKUL Y (2021). A Transgenerational Genetic Marker of the AutismSpectrum Disorder. Erciyes Medical Journal, 43(3), 214 - 220. 10.14744/etd.2021.65289
Chicago RASSOULZADEGAN Minoo,TAHER Serpil,CUZİN François,ÖZKUL Yusuf A Transgenerational Genetic Marker of the AutismSpectrum Disorder. Erciyes Medical Journal 43, no.3 (2021): 214 - 220. 10.14744/etd.2021.65289
MLA RASSOULZADEGAN Minoo,TAHER Serpil,CUZİN François,ÖZKUL Yusuf A Transgenerational Genetic Marker of the AutismSpectrum Disorder. Erciyes Medical Journal, vol.43, no.3, 2021, ss.214 - 220. 10.14744/etd.2021.65289
AMA RASSOULZADEGAN M,TAHER S,CUZİN F,ÖZKUL Y A Transgenerational Genetic Marker of the AutismSpectrum Disorder. Erciyes Medical Journal. 2021; 43(3): 214 - 220. 10.14744/etd.2021.65289
Vancouver RASSOULZADEGAN M,TAHER S,CUZİN F,ÖZKUL Y A Transgenerational Genetic Marker of the AutismSpectrum Disorder. Erciyes Medical Journal. 2021; 43(3): 214 - 220. 10.14744/etd.2021.65289
IEEE RASSOULZADEGAN M,TAHER S,CUZİN F,ÖZKUL Y "A Transgenerational Genetic Marker of the AutismSpectrum Disorder." Erciyes Medical Journal, 43, ss.214 - 220, 2021. 10.14744/etd.2021.65289
ISNAD RASSOULZADEGAN, Minoo vd. "A Transgenerational Genetic Marker of the AutismSpectrum Disorder". Erciyes Medical Journal 43/3 (2021), 214-220. https://doi.org/10.14744/etd.2021.65289