Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 111 - 122 Metin Dili: Türkçe DOI: 10.5505/kjms.2021.75537 İndeks Tarihi: 09-02-2022

Karaciğer Fibrozisinde Sitokinlerin Rolü

Öz:
Karaciğer fibrozisi, hepatik parankimanın farklı bölgelerinde ekstraselüler matriks (ECM) birikimine neden olan α-smooth muscle actin (α-SMA) proteini gibi bir seri proteinin ekspresyonunu başlatan ve esas olarak kolajen üretimi ile ilişkili olan hepatik stellat hücrelerinin (HSCs) aktivasyonu ile karakterize bir hastalıktır. Tüm dünyada yaygın olarak görülen karaciğer fibrozisi; viral enfeksiyonlar, alkol alımı veya metabolik sendrom sebebiyle steatohepatit, otoimmün hastalıklar ve safra tıkanıklığına bağlı olarak kolestaz da dahil olmak üzere çeşitli kronik karaciğer bozukluklarının bir sonucu olarak ortaya çıkmaktadır. Karaciğer fibrozisi, ciddi morbidite oranı ile sonuçlanan önemli bir sağlık sorunudur. Hastalığın patogenezinde hasarlı bölgeye toplanan inflamatuar hücrelerin ve profibrojenik sitokinlerin salınımı kritik rol oynamaktadır. Karaciğer patogenezinde inflamatuar yanıt 3 yolla oluşmaktadır. IL-1β, IL-6, TNF-α ve IFN-γüretimi ile karakterize olan tip 1 inflamasyon proinflamatuar ve antifibrojenik özellikte olup karaciğer inflamasyonu ile ilişkilidir. IL-4, IL-5, IL-10, IL-13, IL-25 ve IL-33 üretimi ile karakterize olan tip 2 inflamasyon karaciğer progresyonu ile ilişkili olup azalan hepatik inflamasyonla ilişkilidir. Mevcut teori tip 1 ve tip 2 inflamasyon arasındaki dengesizliğin karaciğerdeki fibrozisi tetiklediği yönündedir. Tip 3 inflamasyon ise IL-17A, IL-17F, IL-22 ve IL-26, grup 3 başlatıcı lenfoid hücre (ILC3), T yardımcı hücre 17 (Th17) ve T yardımcı hücre 22 (Th22) ile karakterizedir. Tip 3 sitokinler doku homeostazında patolojik olarak önemli bir role sahiptir. Tip 3 immünitede meydana gelen bozukluk anormal doku tamiri, kronik inflamatuar hastalıklar, bağırsak ve akciğer kanserleri ile ilişkilidir. Bu çalışma ile sitokinlerin karaciğer fibrozisi üzerindeki rolünü derlemeyi amaçladık.
Anahtar Kelime:

Role of Cytokines in Liver Fibrosis

Öz:
Liver fibrosis is a characterized by activation of hepatic stellate cells (HSCs) that mainly associated with collagen production which initiate the expression of a series of proteins such as the α-smooth muscle actin (α-SMA) protein that causes accumulation of extracellular matrix (ECM) in different regions of the hepatic parenchyma. In worldwide, Liver fibrosis occurs as a result of various chronic liver disorders including steatohepatitis due to viral infections, alcohol intake or metabolic syndrome, autoimmune diseases and cholestasis due to biliary obstruction. Liver fibrosis is an important health problem that results in severe morbidity. The release of inflammatory cells and profibrogenic cytokines collected in the damaged area plays a critical role in the pathogenesis of the disease. Inflammatory response occurs in 3 ways in liver pathogenesis. Type 1 inflammation which is characterized by the production of IL-1β, IL-6, TNF-α and IFN-γ is proinflammatory, anti-fibrogenic and associated with liver inflammation. Type 2 inflammation characterized by the production of IL-4, IL-5, IL-10, IL-13, IL-25 and IL-33 is associated with liver progression and associated with reduced hepatic inflammation. The current theory is that the imbalance between type 1 and type 2 inflammation triggers liver fibrosis. Type 3 inflammation is characterized by IL-17A, IL-17F, IL-22 and IL-26, group 3 initiating lymphoid cell (ILC3), T helper cell 17 (Th17) and T helper cell 22 (Th22). Type 3 cytokines have a pathologically important role in tissue homeostasis. The disorder that occurs in type 3 immunity is associated with abnormal tissue repair, chronic inflammatory diseases, bowel and lung cancers. In our study, we aim to review the role of cytokines in liver fibrosis.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 2017;27(21): R1147-R51.
  • 2. Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016;13(3):267–76.
  • 3. Balkwill F. The Cytokine Network. Oxford University Press 2000.
  • 4. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 2015;135(3):626–35.
  • 5. Baroni GS, D’Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 1996;23(5):1189–99.
  • 6. Gieseck RL, 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2018;18(1):62–76.
  • 7. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011;6:425–56.
  • 8. Brockmann L, Giannou AD, Gagliani N, Huber S. Regulation of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. Int J Mol Sci 2017;18(5)
  • 9. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 2009;27:147–63.
  • 10. Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol 2009;31(3):333–43.
  • 11. Kelly A, Fahey R, Fletcher JM, Keogh C, Carroll AG, Siddachari R, et al. CD141(+) myeloid dendritic cells are enriched in healthy human liver. J Hepatol 2014;60(1):135–42.
  • 12. Doherty DG, Norris S, Madrigal-Estebas L, McEntee G, Traynor O, Hegarty JE, et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 1999;163(4):2314– 21.
  • 13. Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 1998;28(1):84–90.
  • 14. Janeway CA, Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13(1):11–6.
  • 15. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805–20.
  • 16. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012;143(5):1158–72.
  • 17. Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human CD8(+) and CD4(+)T Cells. Int Rev Cell Mol Biol 2018;341:63–124.
  • 18. Tubo NJ, Jenkins MK. TCR signal quantity and quality in CD4(+) T cell differentiation. Trends Immunol 2014;35(12):591–6.
  • 19. Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2014;381:125–72.
  • 20. Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci (Lond)2007;112(5):265– 80.
  • 21. Holt AP, Salmon M, Buckley CD, Adams DH. Immune interactions in hepatic fibrosis. Clin Liver Dis 2008;12(4):861– 82, x.
  • 22. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;214(2):199–210.
  • 23. Zhang S, Liang R, Luo W, Liu C, Wu X, Gao Y, et al. High susceptibility to liver injury in IL-27 p28 conditional knockout mice involves intrinsic interferon-gamma dysregulation of CD4+ T cells. Hepatology 2013;57(4):1620–31.
  • 24. Shigematsu K, Nakano H, Watanabe Y, Sekimoto T, Shimizu K, Nishizawa A, et al. Characteristics, risk factors and mortality of stroke patients in Kyoto, Japan. BMJ Open 2013;3(3)
  • 25. Gu L, Deng WS, Sun XF, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep 2016;14(2):1153–61.
  • 26. Cheng LS, Liu Y, Jiang W. Restoring homeostasis of CD4(+) T cells in hepatitis-B-virus-related liver fibrosis. World J Gastroenterol 2015;21(38):10721–31.
  • 27. Marra F, Aleffi S, Galastri S, Provenzano A. Mononuclear cells in liver fibrosis. Semin Immunopathol 2009;31(3):345–58.
  • 28. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 2003;171(7):3655–67.
  • 29. Navarro-Partida J, Martinez-Rizo AB, Gonzalez-Cuevas J, Arrevillaga-Boni G, Ortiz-Navarrete V, Armendariz-Borunda J. Pirfenidone restricts Th2 differentiation in vitro and limits Th2 response in experimental liver fibrosis. Eur J Pharmacol 2012;678(1–3):71–7.
  • 30. Li J, Qiu SJ, She WM, Wang FP, Gao H, Li L, et al. Significance of the balance between regulatory T (Treg) and T helper 17(Th17)cells during hepatitis B virus related liver fibrosis. PLoS One 2012;7(6): e39307.
  • 31. Sun XF, Gu L, Deng WS, Xu Q. Impaired balance of T helper 17/T regulatory cells in carbon tetrachloride-induced liver fibrosis in mice. World J Gastroenterol 2014;20(8):2062–70.
  • 32. Xuan J, Guo SL, Huang A, Xu HB, Shao M, Yang Y, et al. MiR-29a and miR-652 Attenuate Liver Fibrosis by Inhibiting the Differentiation of CD4+ T Cells. Cell Struct Funct 2017;42(2):95–103.
  • 33. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, et al. Interleukin-17-producing CD4(+)T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 2010;51(1):81–91.
  • 34. Yang B, Wang Y, Zhao C, Yan W, Che H, Shen C, et al. Increased Th17 cells and interleukin-17 contribute to immune activation and disease aggravation in patients with chronic hepatitis B virus infection. Immunol Lett 2013;149(1–2):41–9.
  • 35. Sun HQ, Zhang JY, Zhang H, Zou ZS, Wang FS, Jia JH. Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J Viral Hepat 2012;19(6):396–403.
  • 36. Du WJ, Zhen JH, Zeng ZQ, Zheng ZM, Xu Y, Qin LY, et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diagn Pathol 2013;8:40.
  • 37. Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 2013;191(4):1835–44.
  • 38. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6(11):1123–32.
  • 39. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6(11):1133– 41.
  • 40. Zhang Y, Cobleigh MA, Lian JQ, Huang CX, Booth CJ, Bai XF, et al. A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology 2011;141(5):1897–906.
  • 41. Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 2012;56(3):1150–9.
  • 42. Kong X, Feng D, Mathews S, Gao B. Hepatoprotective and antifibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J Gastroenterol Hepatol 2013;28 Suppl 1:56–60.
  • 43. Zhao J, Zhang Z, Luan Y, Zou Z, Sun Y, Li Y, et al. Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology 2014;59(4):1331–42.
  • 44. Xiang X, Gui H, King NJ, Cole L, Wang H, Xie Q, et al. IL-22 and non-ELR-CXC chemokine expression in chronic hepatitis B virus-infected liver. Immunol Cell Biol 2012;90(6):611–9.
  • 45. Pan Q, Yu Y, Tang Z, Xi M, Jiang H, Xun Y, et al. Increased levels of IL-21 responses are associated with the severity of liver injury in patients with chronic active hepatitis B. J Viral Hepat 2014;21(9): e78–88.
  • 46. Hu X, Ma S, Huang X, Jiang X, Zhu X, Gao H, et al. Interleukin-21 is upregulated in hepatitis B-related acute-onchronic liver failure and associated with severity of liver disease. J Viral Hepat 2011;18(7):458–67.
  • 47. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 2003;112(9):1437–43.
  • 48. Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev 2010;21(5):331–44.
  • 49. Naundorf S, Schroder M, Hoflich C, Suman N, Volk HD, Grutz G. IL-10 interferes directly with TCR-induced IFN-gamma but not IL-17 production in memory T cells. Eur J Immunol 2009;39(4):1066–77.
  • 50. Wu W, Li J, Chen F, Zhu H, Peng G, Chen Z. Circulating Th17 cells frequency is associated with the disease progression in HBV infected patients. J Gastroenterol Hepatol 2010;25(4):750–7.
  • 51. Bardel E, Larousserie F, Charlot-Rabiega P, CoulombL’Hermine A, Devergne O. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol 2008;181(10):6898–905.
  • 52. Shi M, Wei J, Dong J, Meng W, Ma J, Wang T, et al. Function of interleukin-17 and -35 in the blood of patients with hepatitis B-related liver cirrhosis. Mol Med Rep 2015;11(1):121–6.
  • 53. Liu F, Tong F, He Y, Liu H. Detectable expression of IL-35 in CD4+ T cells from peripheral blood of chronic hepatitis B patients. Clin Immunol 2011;139(1):1–5.
  • 54. Yu X, Guo R, Ming D, Su M, Lin C, Deng Y, et al. Ratios of regulatory T cells/T-helper 17 cells and transforming growth factor-beta1/interleukin-17 to be associated with the development of hepatitis B virus-associated liver cirrhosis. J Gastroenterol Hepatol 2014;29(5):1065–72.
  • 55. Xu L, Gong Y, Wang B, Shi K, Hou Y, Wang L, et al. Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: regulation of Treg/Th17 cells. J Gastroenterol Hepatol 2014;29(8):1620–8.
  • 56. Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev 2013;252(1):104–15.
  • 57. Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol 2014;35(2):61–8.
  • 58. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015;74(1):5–17.
  • 59. Lai R, Xiang X, Mo R, Bao R, Wang P, Guo S, et al. Protective effect of Th22 cells and intrahepatic IL-22 in drug induced hepatocellular injury. J Hepatol 2015;63(1):148–55.
  • 60. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med 2012;209(7):1241–53.
  • 61. Jia Y, Zeng Z, Li Y, Li Z, Jin L, Zhang Z, et al. Impaired function of CD4+ T follicular helper (Tfh) cells associated with hepatocellular carcinoma progression. PLoS One 2015;10(2): e0117458.
  • 62. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 2006;177(1):36–9.
  • 63. Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2008;226:57–79.
  • 64. Gasse P, Riteau N, Vacher R, Michel ML, Fautrel A, di Padova F, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One 2011;6(8): e23185.
  • 65. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol 2012;188(8):3573–83.
  • 66. Hammerich L, Heymann F, Tacke F. Role of IL-17 and Th17 cells in liver diseases. Clin Dev Immunol 2011;2011:345803.
  • 67. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009;361(9):888–98.
  • 68. Lafdil F, Miller AM, Ki SH, Gao B. Th17 cells and their associated cytokines in liver diseases. Cell Mol Immunol 2010;7(4):250–4.
  • 69. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010;10(7):479–89.
  • 70. Sharma AK, LaPar DJ, Zhao Y, Li L, Lau CL, Kron IL, et al. Natural killer T cell-derived IL-17 mediates lung ischemia-reperfusion injury. Am J Respir Crit Care Med 2011;183(11):1539–49.
  • 71. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, et al. IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J Immunol 2008;181(5):3456–63.
  • 72. Zheng L, Chu J, Shi Y, Zhou X, Tan L, Li Q, et al. Bone marrowderived stem cells ameliorate hepatic fibrosis by down-regulating interleukin-17. Cell Biosci 2013;3(1):46.
  • 73. Zeng R, Spolski R, Casas E, Zhu W, Levy DE, Leonard WJ. The molecular basis of IL-21-mediated proliferation. Blood 2007;109(10):4135–42.
  • 74. Liu Z, Yang L, Cui Y, Wang X, Guo C, Huang Z, et al. Il-21 enhances NK cell activation and cytolytic activity and induces Th17 cell differentiation in inflammatory bowel disease. Inflamm Bowel Dis 2009;15(8):1133–44.
  • 75. Parrish-Novak J, Foster DC, Holly RD, Clegg CH. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J Leukoc Biol 2002;72(5):856–63.
  • 76. Wang T, Diaz-Rosales P, Costa MM, Campbell S, Snow M, Collet B, et al. Functional characterization of a nonmammalian IL-21: rainbow trout Oncorhynchus mykiss IL-21 upregulates the expression of the Th cell signature cytokines IFN-gamma, IL-10, and IL-22. J Immunol 2011;186(2):708–21.
  • 77. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008;134(4):1038–48.
  • 78. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T (H)17 cells. Nature 2007;448(7152):484–7.
  • 79. Ettinger R, Kuchen S, Lipsky PE. Interleukin 21 as a target of intervention in autoimmune disease. Ann Rheum Dis 2008;67 Suppl 3: iii83–6.
  • 80. Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A, et al. A critical role for IL-21 in regulating immunoglobulin production. Science 2002;298(5598):1630–4.
  • 81. Young DA, Hegen M, Ma HL, Whitters MJ, Albert LM, Lowe L, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum 2007;56(4):1152–63.
  • 82. Pesce J, Kaviratne M, Ramalingam TR, Thompson RW, Urban JF, Jr., Cheever AW, et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest 2006;116(7):2044–55.
  • 83. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 2001;167(11):6533–44.
  • 84. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115(1):56–65.
  • 85. Li L, Huang L, Vergis AL, Ye H, Bajwa A, Narayan V, et al. IL17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest 2010;120(1):331–42.
  • 86. Lee PW, Smith AJ, Yang Y, Selhorst AJ, Liu Y, Racke MK, et al. IL-23R-activated STAT3/STAT4 is essential for Th1/Th17- mediated CNS autoimmunity. JCI Insight 2017;2(17)
  • 87. Yamaguchi R, Sakamoto A, Yamamoto T, Narahara S, Sugiuchi H, Yamaguchi Y. Differential regulation of IL-23 production in M1 macrophages by TIR8/SIGIRR through TLR4- or TLR7/8-mediated signaling. Cytokine 2017;99:310–5.
  • 88. Bao S, Zheng J, Li N, Huang C, Chen M, Cheng Q, et al. Role of interleukin-23 in monocyte-derived dendritic cells of HBVrelated acute-on-chronic liver failure and its correlation with the severity of liver damage. Clin Res Hepatol Gastroenterol 2017;41(2):147–55.
  • 89. Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1(HMGB1)-Toll-like receptor (TLR)4-interleukin (IL)- 23-IL-17A axis in drug-induced damage-associated lethal hepatitis: Interaction of gammadelta T cells with macrophages. Hepatology 2013;57(1):373–84.
  • 90. Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 2014;59(5):1944–53.
  • 91. Wang Q, Zhou J, Zhang B, Tian Z, Tang J, Zheng Y, et al. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis. PLoS Pathog 2013;9(6): e1003410.
  • 92. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 2009;119(12):3573–85.
  • 93. Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 2000;164(4):1814–9.
  • 94. Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol 2010;32(1):17–31.
  • 95. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 2007;27(4):647–59.
  • 96. Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22(IL22)plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004;39(5):1332–42.
  • 97. Fabre T, Molina MF, Soucy G, Goulet JP, Willems B, Villeneuve JP, et al. Type 3 cytokines IL-17A and IL-22 drive TGF-betadependent liver fibrosis. Sci Immunol 2018;3(28)
  • 98. Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 2010;207(6):1293–305.
  • 99. Molina MF, Abdelnabi MN, Fabre T, Shoukry NH. Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 2019;124:154497.
  • 100. Hu BL, Shi C, Lei RE, Lu DH, Luo W, Qin SY, et al. Interleukin-22 ameliorates liver fibrosis through miR-200a/ beta-catenin. Sci Rep 2016;6:36436.
  • 101. Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, et al. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 2000;165(5):2798–808.
  • 102. Hammerich L, Tacke F. Interleukins in chronic liver disease: lessons learned from experimental mouse models. Clin Exp Gastroenterol 2014;7:297–306.
  • 103. Zhang LJ, Wang XZ. Interleukin-10 and chronic liver disease. World J Gastroenterol 2006;12(11):1681–5.
  • 104. Louis H, Le Moine O, Peny MO, Quertinmont E, Fokan D, Goldman M, et al. Production and role of interleukin-10 in concanavalin A-induced hepatitis in mice. Hepatology 1997;25(6):1382–9.
  • 105. Wang SC, Ohata M, Schrum L, Rippe RA, Tsukamoto H. Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 1998;273(1):302–8.
  • 106. Thompson K, Maltby J, Fallowfield J, McAulay M, MillwardSadler H, Sheron N. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 1998;28(6):1597–606.
  • 107. Hung KS, Lee TH, Chou WY, Wu CL, Cho CL, Lu CN, et al. Interleukin-10 gene therapy reverses thioacetamideinduced liver fibrosis in mice. Biochem Biophys Res Commun 2005;336(1):324–31.
  • 108. Luo M, Peng H, Chen P, Zhou Y. The immunomodulatory role of interleukin-35 in fibrotic diseases. Expert Rev Clin Immunol 2019;15(4):431–9.
  • 109. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 2010;11(12):1093–101.
  • 110. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007;450(7169):566–9.
  • 111. Dixon KO, van der Kooij SW, Vignali DA, van Kooten C. Human tolerogenic dendritic cells produce IL-35 in the absence of other IL-12 family members. Eur J Immunol 2015;45(6):1736–47.
  • 112. Choi J, Leung PS, Bowlus C, Gershwin ME. IL-35 and Autoimmunity: a Comprehensive Perspective. Clin Rev Allergy Immunol 2015;49(3):327–32.
  • 113. Tsuda M, Zhang W, Yang GX, Tsuneyama K, Ando Y, Kawata K, et al. Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFbeta receptor type II mice. Hepatology 2013;57(2):806–16.
  • 114. Wang J, Cai Y, Ji H, Feng J, Ayana DA, Niu J, et al. Serum IL-33 levels are associated with liver damage in patients with chronic hepatitis B. J Interferon Cytokine Res 2012;32(6):248–53.
  • 115. Marvie P, Lisbonne M, L’Helgoualc’h A, Rauch M, Turlin B, Preisser L, et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med 2010;14(6B):1726–39.
  • 116. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005;23(5):479–90.
  • 117. Tan Z, Liu Q, Jiang R, Lv L, Shoto SS, Maillet I, et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol Immunol 2018;15(4):388–98.
  • 118. McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013;39(2):357–71.
  • 119. Zhao PW, Shi X, Li C, Ayana DA, Niu JQ, Feng JY, et al. IL-33 Enhances Humoral Immunity Against Chronic HBV Infection Through Activating CD4(+)CXCR5(+)TFH Cells. J Interferon Cytokine Res 2015;35(6):454–63.
  • 120. Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 2014;134(6):1422–32 e11.
  • 121. Wang L, Zhao C, Peng Q, Shi J, Gu G. Expression levels of CD28, CTLA-4, PD-1 and Tim-3 as novel indicators of T-cell immune function in patients with chronic hepatitis B virus infection. Biomed Rep 2014;2(2):270–4.
  • 122. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007;19(7):813–24.
  • 123. Affolter T, Llewellyn HP, Bartlett DW, Zong Q, Xia S, Torti V, et al. Inhibition of immune checkpoints PD-1, CTLA-4, and IDO1 coordinately induces immune-mediated liver injury in mice. PLoS One 2019;14(5): e0217276.
  • 124. Oestreich KJ, Yoon H, Ahmed R, Boss JM. NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 2008;181(7):4832–9.
  • 125. Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med 2016;375(18):1767–78.
  • 126. Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol 2015;62(6):1420–9.
  • 127. Raziorrouh B, Heeg M, Kurktschiev P, Schraut W, Zachoval R, Wendtner C, et al. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules. PLoS One 2014;9(8): e105703.
  • 128. Raziorrouh B, Ulsenheimer A, Schraut W, Heeg M, Kurktschiev P, Zachoval R, et al. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology 2011;141(4):1422–31, 31 e1–6.
  • 129. Xu P, Chen YJ, Chen H, Zhu XY, Song HF, Cao LJ, et al. The expression of programmed death-1 in circulating CD4+ and CD8+ T cells during hepatitis B virus infection progression and its correlation with clinical baseline characteristics. Gut Liver 2014;8(2):186–95.
  • 130. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 2003;4(11):1093–101.
  • 131. Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol 2003;3(6):454–62.
  • 132. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005;6(12):1245–52.
  • 133. Niwa H, Satoh T, Matsushima Y, Hosoya K, Saeki K, Niki T, et al. Stable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic tool for Th1- and/or Th17-mediated skin inflammation. Clin Immunol 2009;132(2):184–94.
  • 134. Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, et al. Tim-3 fosters HCC development by enhancing TGF-beta-mediated alternative activation of macrophages. Gut 2015;64(10):1593– 604.
  • 135. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 2007;318(5853):1141–3.
  • 136. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012;13(9):832–42.
  • 137. Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, et al. Gonadectomy of male BALB/c mice increases Tim-3(+)alternatively activated M2 macrophages, Tim-3(+)T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun 2009;23(5):649–57.
  • 138. Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, et al. Cutting edge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity. J Immunol 2006;176(11):6411–5.
  • 139. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002;415(6871):536–41.
  • 140. Ju Y, Shang X, Liu Z, Zhang J, Li Y, Shen Y, et al. The Tim-3/ galectin-9 pathway involves in the homeostasis of hepatic Tregs in a mouse model of concanavalin A-induced hepatitis. Mol Immunol 2014;58(1):85–91.
  • 141. Wang F, Wan L, Zhang C, Zheng X, Li J, Chen ZK. Tim3-Galectin-9 pathway involves the suppression induced by CD4+CD25+ regulatory T cells. Immunobiology 2009;214(5):342–9.
  • 142. Zhao L, Liang J, Rao W, Cui M, Ren S, Zhang L, et al. Crossregulation by TLR4 and T cell Ig mucin-3 determines severity of liver injury in a CCl4-induced mouse model. Scand J Immunol 2020;91(4): e12851.
  • 143. Wu W, Shi Y, Li J, Chen F, Chen Z, Zheng M. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Virol J 2011;8:113.
  • 144. Basu S, Dittel BN. Unraveling the complexities of cannabinoid receptor 2(CB2) immune regulation in health and disease. Immunol Res 2011;51(1):26–38.
  • 145. Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, Zafrani ES, et al. Cannabinoid receptor 2 counteracts interleukin17-induced immune and fibrogenic responses in mouse liver. Hepatology 2014;59(1):296–306.
  • 146. Teixeira-Clerc F, Belot MP, Manin S, Deveaux V, Cadoudal T, Chobert MN, et al. Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration. Hepatology 2010;52(3):1046–59.
  • 147. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134(6):1655–69.
  • 148. Safadi R, Ohta M, Alvarez CE, Fiel MI, Bansal M, Mehal WZ, et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin–10 from hepatocytes. Gastroenterology 2004;127(3):870–82.
  • 149. Melhem A, Muhanna N, Bishara A, Alvarez CE, Ilan Y, Bishara T, et al. Anti–fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006;45(1):60–71.
APA Anapalı M, balkan e (2021). Karaciğer Fibrozisinde Sitokinlerin Rolü. , 111 - 122. 10.5505/kjms.2021.75537
Chicago Anapalı Merve,balkan eda Karaciğer Fibrozisinde Sitokinlerin Rolü. (2021): 111 - 122. 10.5505/kjms.2021.75537
MLA Anapalı Merve,balkan eda Karaciğer Fibrozisinde Sitokinlerin Rolü. , 2021, ss.111 - 122. 10.5505/kjms.2021.75537
AMA Anapalı M,balkan e Karaciğer Fibrozisinde Sitokinlerin Rolü. . 2021; 111 - 122. 10.5505/kjms.2021.75537
Vancouver Anapalı M,balkan e Karaciğer Fibrozisinde Sitokinlerin Rolü. . 2021; 111 - 122. 10.5505/kjms.2021.75537
IEEE Anapalı M,balkan e "Karaciğer Fibrozisinde Sitokinlerin Rolü." , ss.111 - 122, 2021. 10.5505/kjms.2021.75537
ISNAD Anapalı, Merve - balkan, eda. "Karaciğer Fibrozisinde Sitokinlerin Rolü". (2021), 111-122. https://doi.org/10.5505/kjms.2021.75537
APA Anapalı M, balkan e (2021). Karaciğer Fibrozisinde Sitokinlerin Rolü. Kafkas Tıp Bilimleri Dergisi, 11(1), 111 - 122. 10.5505/kjms.2021.75537
Chicago Anapalı Merve,balkan eda Karaciğer Fibrozisinde Sitokinlerin Rolü. Kafkas Tıp Bilimleri Dergisi 11, no.1 (2021): 111 - 122. 10.5505/kjms.2021.75537
MLA Anapalı Merve,balkan eda Karaciğer Fibrozisinde Sitokinlerin Rolü. Kafkas Tıp Bilimleri Dergisi, vol.11, no.1, 2021, ss.111 - 122. 10.5505/kjms.2021.75537
AMA Anapalı M,balkan e Karaciğer Fibrozisinde Sitokinlerin Rolü. Kafkas Tıp Bilimleri Dergisi. 2021; 11(1): 111 - 122. 10.5505/kjms.2021.75537
Vancouver Anapalı M,balkan e Karaciğer Fibrozisinde Sitokinlerin Rolü. Kafkas Tıp Bilimleri Dergisi. 2021; 11(1): 111 - 122. 10.5505/kjms.2021.75537
IEEE Anapalı M,balkan e "Karaciğer Fibrozisinde Sitokinlerin Rolü." Kafkas Tıp Bilimleri Dergisi, 11, ss.111 - 122, 2021. 10.5505/kjms.2021.75537
ISNAD Anapalı, Merve - balkan, eda. "Karaciğer Fibrozisinde Sitokinlerin Rolü". Kafkas Tıp Bilimleri Dergisi 11/1 (2021), 111-122. https://doi.org/10.5505/kjms.2021.75537