Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 12 - 22 Metin Dili: İngilizce İndeks Tarihi: 18-02-2022

Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid

Öz:
Flow patterns and their bifurcation for a steady, viscous, Stokes flow inside a Z-shaped cavity with moving upper lid are investigated. Stokes equation with two parameters h1 and h2 which are related to the heights of the field is solved analytically using an infinite series of eigenfunctions. The ( h h 1 2 , ) control space diagram is constructed to examine the new eddy generation, and attention is then focused on the effect of the re-entrant corner on the flow transformation in the Z-shaped domain.
Anahtar Kelime:

Üst Kapağı Hareketli Z-Şekilli Kavitideki Stokes Akış

Öz:
Durağan, viskoz, Stokes akış için üst kapağı hareketli Z şekilli bir kaviti içindeki akış modelleri ve çatallanmaları araştırılmıştır. Bölge yükseklikleri ile ilgili iki parametre h1 ve h2 olmak üzere Stokes denklemi, öz fonksiyonların sonsuz serisi kullanılarak analitik olarak çözülmüştür. ( h h 1 2 , ) kontrol uzay diyagramı yeni girdap oluşumunu incelemek için oluşturulmuştur ve daha sonra, çıkıntılı köşenin Z-şekilli alandaki akış dönüşümü üzerindeki etkisine odaklanılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • An, B., Bergada, J M., Mellibovsky, F. 2019. The lid-driven rightangled isosceles triangular cavity flow. J. Fluid Mech., 875(9), 476–519. https://doi.org/10.1017/jfm.2019.512
  • Bakker, PG. 1991. Bifurcations in Flow Patterns. In Kluwer. https://doi.org/10.1017/S0022112093211624
  • Botella, O., Peyret, R. 1998. Benchmark Spectral Results on the Lid Driven Cavity Flow. Comput. Fluids, 27(4), 421–433. https://doi.org/10.1016/S0045-7930(98)00002-4
  • Brøns, M., Hartnack, J. N. 1999. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries. Phys. Fluids, 11(2), 314–324. https:// doi.org/10.1063/1.869881
  • Bruneau, CH., Saad, M. 2006. The 2D lid-driven cavity problem revisited. Comput. Fluids., 35(3), 326-348. https://doi. org/10.1016/j.compfluid.2004.12.004
  • Deliceoğlu, A., Aydin, SH. 2013. Flow bifurcation and eddy genesis in an L-shaped cavity. Comput. Fluids, 73, 24–46. https://doi.org/10.1016/j.compfluid.2012.12.008
  • Deliceoğlu, A., Aydin, SH. 2014. Topological flow structures in an L-shaped cavity with horizontal motion of the upper lid. J. Comput. Appl. Math., 259(PART B), 937–943. https://doi. org/10.1016/j.cam.2013.10.007
  • Deliceoğlu, A., Bozkurt, D., Çelik, E. 2019. Flow topology in an L-shaped cavity with lids moving in the same directions. Math. Methods Appl. Sci., 43(15), 8317-8326. https://doi. org/10.1002/mma.5972
  • Deliceoğlu, A., Çelik, E. 2019. A Mechanism of Eddy Generation in A Single Lid-Driven T-Shaped Cavity. Cumhuriyet Science Journal, 40(3), 583–594. https://doi.org/10.17776/csj.569655
  • Driesen, C. H., Kuerten, JGM., Streng, M. 1998. LowReynolds-number flow over partially covered cavities. J. Eng. Math., 34(1–2), 3–21. https://doi.org/10.1007/978-94-017- 1564-5_1
  • Erturk, E. 2018. Benchmark solutions of driven polar cavity flow at high reynolds numbers. Int. J. Mech. Eng. Technol., 9(8), 776– 786. Article ID: IJMET_09_08_084
  • Erturk, E., Corke, TC., Gökçöl, C. 2005. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids, 48(7), 747–774. https:// doi.org/10.1002/fld.953
  • Fadle, J. 1940. Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ingenieur-Archiv, 11(2), 125–149. https://doi.org/10.1007/BF02084699
  • Gaskell, PH., Savage, MD., Summers, JL., Thompson, HM. 1995. Modelling and analysis of meniscus roll coating. J. Fluid Mech., 298(11), 113–137. https://doi.org/10.1017/ S0022112095003247
  • Gaskell, PH., Savage, MD., Wilson, M. 1997. Stokes flow in a half-filled annulus between rotating coaxial cylinders. J. Fluid Mech., 337(4), 263–282. https://doi.org/10.1017/ S0022112097005028
  • Gürcan, F. 2003. Effect of the Reynolds number on streamline bifurcations in a double-lid-driven cavity with free surfaces. Comput. Fluids, 32(9), 1283–1298. https://doi.org/10.1016/ S0045-7930(02)00084-1
  • Gürcan, F., Bilgil, H., Şahin, A. 2016. Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Comoving lids. Eur. J. Mech. B. Fluids, 56, 200–210. https://doi. org/10.1016/j.euromechflu.2015.02.008
  • Gürcan, F., Gaskell, PH., Savage, MD., Wilson, MCT. 2003. Eddy genesis and transformation of Stokes flow in a double-lid driven cavity. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 217(3), 353–363. https://doi.org/10.1243/095440603762870018
  • Gürcan, F., Wilson, MCT., Savage, MD. 2006. Eddy genesis and transformation of Stokes flow in a doublelid-driven cavity. Part 2: Deep cavities. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 220(12), 1765–1773. https://doi. org/10.1243/0954406JMES279
  • Gürcan, F. 2005. Streamline topologies near a stationary wall of Stokes flow in a cavity. Appl. Math. Comput., 165(2), 329–345. https://doi.org/10.1016/j.amc.2004.06.017
  • Hartnack, J. N. 1999. Streamline topologies near a fixed wall using normal forms. Acta Mech., 136(1), 55–75. https://doi. org/10.1007/BF01292298
  • Hellebrand, H. 2006. Tape Casting. Mater. Sci. Technol. (eds R.W. Cahn, P. Haasen and E.J. Kramer) https://doi. org/10.1002/9783527603978.mst0192
  • Hriberšek, M., Škerget, L. 2005. Boundary domain integral method for high Reynolds viscous fluid flows in complex planar geometries. Comput. Methods Appl. Mech. Eng., 194(39- 41), 4196-4220. https://doi.org/10.1016/j.cma.2004.11.002
  • Mahmoodi, M. 2011. Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int. J. Therm. Sci.. https://doi. org/10.1016/j.ijthermalsci.2011.04.009
  • Olsman, WFJ., Colonius, T. 2011. Numerical simulation of flow over an airfoil with a cavity. AIAA Journal, 49(1), 143–149. https://doi.org/10.2514/1.J050542
  • Oztop, HF., Dagtekin, I. 2004. Mixed convection in two-sided lid-driven differentially heated square cavity. Int. J. Heat Mass Transfer., 47(8-9), 1761-1769. https://doi.org/10.1016/j. ijheatmasstransfer.2003.10.016
  • Papkovich, PF. 1970. Uber eine Form der Lösung des byharmonischen Problems für das Rechteck. Dokl. Acad. Sci. USSR., 27. 334–338.
  • Phillips TN. 1989, Singular Matched Eigenfunction Expansions for Stokes Flow around a Corner, IMA J. Appl. Math., 42(1), 13–26. https://doi.org/10.1093/imamat/42.1.13
  • Robbins, CI., Smith, RCT. (1948). CXIX. A table of roots of sin Z=-Z . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(299), 1004–1005. https:// doi.org/10.1080/14786444808521711
  • Shankar, PN. 1993. The eddy structure in stokes flow in a cavity. J. Fluid Mech., 250, 371–383. https://doi.org/10.1017/ S0022112093001491
  • Sheu, TWH., Chiang, CY. 2014. Numerical investigation of chemotaxic phenomenon in incompressible viscous fluid flow. Comput. Fluids, 103, 290–306. https://doi.org/10.1016/j. compfluid.2014.07.023
  • Trogdon, SA., Joseph, DD. 1982. Matched eigenfunction expansions for slow flow over a slot, J. Nonnewton Fluid Mech., 10(3–4), 185-213. https://doi.org/10.1016/0377- 0257(82)80001-3
  • Yang, G., Sun, J., Liang, Y., Chen, Y. 2014. Effect of Geometry Parameters on Low-speed Cavity Flow by Wind Tunnel Experiment. AASRI Procedia, 9, 44–50. https://doi. org/10.1016/j.aasri.2014.09.009
APA ÇELİK E, Luzum M, Deliceoğlu A (2021). Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. , 12 - 22.
Chicago ÇELİK Ebutalib,Luzum Murat,Deliceoğlu Ali Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. (2021): 12 - 22.
MLA ÇELİK Ebutalib,Luzum Murat,Deliceoğlu Ali Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. , 2021, ss.12 - 22.
AMA ÇELİK E,Luzum M,Deliceoğlu A Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. . 2021; 12 - 22.
Vancouver ÇELİK E,Luzum M,Deliceoğlu A Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. . 2021; 12 - 22.
IEEE ÇELİK E,Luzum M,Deliceoğlu A "Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid." , ss.12 - 22, 2021.
ISNAD ÇELİK, Ebutalib vd. "Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid". (2021), 12-22.
APA ÇELİK E, Luzum M, Deliceoğlu A (2021). Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. Karaelmas Fen ve Mühendislik Dergisi, 11(1), 12 - 22.
Chicago ÇELİK Ebutalib,Luzum Murat,Deliceoğlu Ali Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. Karaelmas Fen ve Mühendislik Dergisi 11, no.1 (2021): 12 - 22.
MLA ÇELİK Ebutalib,Luzum Murat,Deliceoğlu Ali Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. Karaelmas Fen ve Mühendislik Dergisi, vol.11, no.1, 2021, ss.12 - 22.
AMA ÇELİK E,Luzum M,Deliceoğlu A Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. Karaelmas Fen ve Mühendislik Dergisi. 2021; 11(1): 12 - 22.
Vancouver ÇELİK E,Luzum M,Deliceoğlu A Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid. Karaelmas Fen ve Mühendislik Dergisi. 2021; 11(1): 12 - 22.
IEEE ÇELİK E,Luzum M,Deliceoğlu A "Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid." Karaelmas Fen ve Mühendislik Dergisi, 11, ss.12 - 22, 2021.
ISNAD ÇELİK, Ebutalib vd. "Stokes Flow in a Z-Shaped Cavity With Moving Upper Lid". Karaelmas Fen ve Mühendislik Dergisi 11/1 (2021), 12-22.