Yıl: 2019 Cilt: 11 Sayı: 1 Sayfa Aralığı: 316 - 327 Metin Dili: Türkçe DOI: 10.29137/umagd.456988 İndeks Tarihi: 03-03-2022

Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu

Öz:
Fotovoltaik (FV) sistemlerin çıkış gücü güneş ışınımı ve sıcaklık değerlerine bağlıdır. Bu makalede, FV sisteminin çıkış gücünün sıcaklık ve güneş ışınımına bağlı değişimi incelenmiştir. Ayrıca, bu çalışmada FV panellerinin yanında FV dizininin çalışma prensibi özetlemiştir. Şebekeden bağımsız FV sistem Matlab/simülasyon programı kullanılarak modellenmiş ve bu çalışmada detaylı çalışması gerçekleştirilmiştir. Ayrıca, farklı sıcaklık ve ışınım değerleri için FV sisteminin çıkış gücü analiz edilmiştir. FV panellerde kısmi gölgelenme durumları için sistemin simulink eşdeğeri oluşturuldu. Kısmi gölgeli durumlara ait IV ve P-V eğrileri bulundu. Sonuç olarak, FV sisteminin çıkış gücünün analitik ifadesi, Sosyal Bilimler İçin İstatistik Programı (SPSS) kullanılarak bulunmuştur.
Anahtar Kelime:

Mathematical Modeling and Simulation of the Photovoltaic System's Output Power depends on Temperature and Irradiance

Öz:
The output power of photovoltaic (PV) systems depends on solar radiation and temperature. In this article, the change of output power of PV system is examined depens on temperature and solar irradiance. Furthermore, this study out lines the working principle of PV panel as well as PV array. Off- grid PV system is modeled by using a Matlab/simulation program and detail study has been carried out in thiswork. Besides, Output power of PV system was analyzed for different temperature and irradiance values. Simulink equivalent of the PV system was created for partial shading on PV panels. I-V and P-V curves were found for partial shaded conditions. As a result, analytical expression of output power of PV system was found by a is statistical package for the social sciences (SPSS) program.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Atlas, I.H., Mengi, O. Ö. (2008). AA ve DA Yüklerini Besleyen FV/Akü Grubunun Matlab/Simulink Ortamında Modellenmesi ve Simulasyonu. Elektrik- Elektronik ve Bilgisayar Mühendisligi Sempozyumu (ELECO). 135-139.
  • Bayrak, G.,Cebeci, M.(2012). 3,6 kW Gücündeki Fotovoltaik Generatörün Matlab/Simulink İle Modellenmesi”, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü dergisi, 28(3), 198-204.
  • Badawy, M.O.,Yilmaz, A.S., Sozer, Y., and Huseini. (2014). Parallel Power Processing Topology for Solar PV Applications, IEEE Transactions on Industry Applications, Vol. 50, No.2, pp. 1245-1255.
  • Cam, E.,Gorel, G., Mamur, H.(2017). Use of the Genetic Algorithm-Based Fuzzy Logic Controller for Load-Frequency Control in a Two Area Interconnected Power System, Appl. Sci., 7(3), 308; doi:10.3390/app7030308.
  • Cangi H., Adak S., (2015). Analysis of solar inverter THD according to PWM’scarrier frequency, 4 th International Conference on Renewable Energy Researchand Applications, Pelermo, Italy, 22-25 Now.
  • Chatterjee, A., Keyhani, A., and Kapoor, D. (2011). Identification of photovoltaic source models”, IEEE Trans. Energy Convers.,vol. 26, no. 3, pp. 883–889, Sep.
  • Cotfas, D., T., Cotfas, P. A., and Kaplanis, S. (2013). Methods to determine the dc parameters of solar cells: A critical review, Renewable and Sustainable Energy Reviews, vol. 28, pp. 588–596.
  • El Khateb, A., Abd Rahim H. N.,Selvara J., and Williams, B. W. (2015). DC-to-DC Converter with Low Input Current Ripple for Maximum Photovoltaic Power Extraction, IEEE Transactions on Industrial Electronics, APRIL.
  • Fangrui, L., Shanxu, D., Fei L., Bangyin L., and Yong K. (2008). A Variable Step Size INC MPPT Method for PV Systems IEEE Transactions on Industrial Electronics, 55(7).
  • Hirose, T.,Osaki, Y., Kuroki, N., and Numa, M. (2010). A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities, in Proc. Eur. Solid State Circuits Conf, Sep.,pp. 114-117.
  • İzgi, E., İnan A., Ay S. (2008). The Analysis and simulation of voltage distribution over string insulators using Matlab/Simulink, Electric power components and systems, vol.36, pp.109-123.
  • LoBrano, V., Orioli A., Ciulla G.,and DiGangi, A., (2010). An improved five parameter model for photovoltaic modules”, Sol. Energy Mater. Sol. Cells,vol. 94, no. 8, pp. 1358–1370.
  • Nema, S., Nema R.K., Agnihotri, G. (2010). MATLAB/Simulink based study of photovoltaic cells/modules/array and their experimental verification, International journal of Energy and Environment , vol.1, No.3, pp.487-500.
  • Nou, J., Chauvin R., Thil S., and Grieu S. (2013). A new approach to of the clear-sky direct normal irradiance, Appl. Math. Modelling, vol. 40, no. 1516, pp. 7245–7264.
  • Özdemir, A. Erdem, Z., (2017). Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters - Journal of Systems and Control Engineering - Vol. - pp. - ISSN : - DOI : DOI: 10.1177/0959651817740006.
  • Perez, M.D.,andGorji N.E., (2016). Modeling of temperature profile, thermalrun a wayand hot spot in thin film solar cells, Mater. Sci. Semicond. Process.,vol. 41, pp. 529–534.
  • Rustemli, S.,Dincer F. (2011). Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink, Electronics and Electrical Engineering, ISSN 1392-1215, no. 3(109), pp. 35-40.
  • Ramlim, A., Prasetyono, E. Wicaksana, R. W. Windarko, Sedraoui,N. A. K., and Al-Turki Y. A. (2016). On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions, Renew. Energy, vol. 99, pp. 836–844.
  • Schuss, C.,Leppanen K., Saarela J., Fabritius T., Eichberger B., and Rahkonen T.(2016). DetectingDefects in Photovoltaic Cells and Panels and Evaluating the Impact on Output Performances, IEEE Transactions on Instrumentation and Measurement, vol. 65, issue: 5, pp. 1-12.
  • Sekkeli, M.,Acikgoz, H. Gani A., Kececioglu, O.F. (2015). Simulation Study and Speed Control of Permanent Magnet Synchronous Motor By Using Self Tuning Fuzzy PID Controller, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 18, no. 1, pp. 17–22, Aug.
  • Şahin, M. E., Okumuş, H. İ. (2013). Güneş Pili Modülünün Matlab/Simulink ile Modellenmesi ve Simülasyonu Cilt 3, Sayı 5, EMO Bilimsel Dergi, Cilt 3, Sayı 5, Syf 17-25, Haziran.
  • Uno, M., Kukita, A. (2017). Current sensorlesse qualization strategy for a single-switch voltage equalizer using multi stacked buck–boost converters for photovoltaic modules under partial shading, IEEE Trans. Ind. Appl.,vol. 53, no. 1, pp. 420–429, Jan./Feb.
  • Xiao, W., Edwin, F. F., Spagnuolo, GJatsvevich, J. (2013). Efficient approach for modelling and simulating photovoltaic power system, IEEE Journal of photovoltaics.,vol. 3, no. 1, pp. 500-508, Jan.
  • Yazdani A.,Dash P.P. (2009). A Control Methodology and Characterization of Dynamics for a Photovoltaic (PV) System Interfaced With a Distribution Network, IEEE Trans. on Power Delivery, Vol. 24, No. 3, July.
APA ADAK S, cangi h, YILMAZ A (2019). Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. , 316 - 327. 10.29137/umagd.456988
Chicago ADAK SULEYMAN,cangi hasan,YILMAZ AHMET SERDAR Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. (2019): 316 - 327. 10.29137/umagd.456988
MLA ADAK SULEYMAN,cangi hasan,YILMAZ AHMET SERDAR Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. , 2019, ss.316 - 327. 10.29137/umagd.456988
AMA ADAK S,cangi h,YILMAZ A Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. . 2019; 316 - 327. 10.29137/umagd.456988
Vancouver ADAK S,cangi h,YILMAZ A Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. . 2019; 316 - 327. 10.29137/umagd.456988
IEEE ADAK S,cangi h,YILMAZ A "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu." , ss.316 - 327, 2019. 10.29137/umagd.456988
ISNAD ADAK, SULEYMAN vd. "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu". (2019), 316-327. https://doi.org/10.29137/umagd.456988
APA ADAK S, cangi h, YILMAZ A (2019). Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 11(1), 316 - 327. 10.29137/umagd.456988
Chicago ADAK SULEYMAN,cangi hasan,YILMAZ AHMET SERDAR Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi 11, no.1 (2019): 316 - 327. 10.29137/umagd.456988
MLA ADAK SULEYMAN,cangi hasan,YILMAZ AHMET SERDAR Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, vol.11, no.1, 2019, ss.316 - 327. 10.29137/umagd.456988
AMA ADAK S,cangi h,YILMAZ A Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi. 2019; 11(1): 316 - 327. 10.29137/umagd.456988
Vancouver ADAK S,cangi h,YILMAZ A Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi. 2019; 11(1): 316 - 327. 10.29137/umagd.456988
IEEE ADAK S,cangi h,YILMAZ A "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu." Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 11, ss.316 - 327, 2019. 10.29137/umagd.456988
ISNAD ADAK, SULEYMAN vd. "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu". Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi 11/1 (2019), 316-327. https://doi.org/10.29137/umagd.456988