Yıl: 2021 Cilt: 34 Sayı: 2 Sayfa Aralığı: 807 - 822 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.591293 İndeks Tarihi: 29-07-2022

İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım

Öz:
Bu çalışmada İki Aşamalı Yer Seçimi ve Eş Zamanlı Topla Dağıt Araç Rotalama Problemi (2A/YSETDARP) ele alınmıştır. Bu problemde amaç, fabrika, depo ve müşterilerden oluşan iki aşamalı bir dağıtım ağında en düşük maliyet ile hangi tesislerin hangi aday bölgelere kurulacağı ve her aşamada rotalama faaliyetlerinin nasıl gerçekleşeceğini belirlemektir. Rotalama faaliyetleri iki yönlü olup birincil tesislerden (fabrika) ikincil tesislere (depo) ve ikincil tesislerden müşterilere yapılacak olan dağıtım, müşterilerden ikincil tesislere ve ikincil tesislerden birincil tesislere gönderilmek üzere toplama faaliyetlerini kapsamaktadır. 2A/YS-ETDARP’nin çözümü için iki indisli düğüm tabanlı karışık tamsayılı bir matematiksel model önerilmiştir. Problem NP-Zor problemler sınıfında yer aldığından dolayı büyük boyutlu problemlerin çözümü için Clarke-Wright algoritmasına dayalı bir çözüm kurucu sezgisel algoritma geliştirilmiştir. Sezgisel algoritmanın performansını değerlendirmek için literatürden elde edilmiş değişik veri setleri üzerinde deneysel bir çalışma yapılmıştır. Deneysel çalışma sonucunda sezgisel algoritmanın orta ve büyük boyutlu problemlere çok kısa sürelerde iyi çözümler ürettiği görülmüştür. Dolayısıyla bu çalışmanın literatüre katkısı küçük boyutlu problemlerin çözümü için etkin bir matematiksel modelin sunulması, orta ve büyük boyutlu problemlerin çözümü için çok hızlı ve kaliteli çözüm üreten bir çözüm kurucu algoritmanın geliştirilmesidir.
Anahtar Kelime: iki aşamalı yer seçimi ve araç rotalama problemi tam sayılı programlama sezgisel yaklaşım eş zamanlı topla dağıt

HEVC üzerinde düşük Bit-Derinliğine sahip hareket kestirim yöntemlerinin başarımlarının değerlendirilmesi

Öz:
Bu çalışmada düşük bit derinliği gösterimi temeli hareket kestirimi yaklaşımlarının en güncel video kodlamastandardı olan HEVC üzerinde detaylı bir karşılaştırmalı analiz gerçekleştirilmiştir. Böylelikle geçmişteçoğunlukla açık çevrim performans değerlendirmesine tabii tutulan bu yaklaşımların bir kodlayıcıiçerisindeki gerçek performansı ortaya çıkarılmıştır. Bunun yanı sıra, düşük bit derinliği gösterimi temellihareket kestirim yaklaşımlarının daha da hızlandırılması için seyrek arama yaklaşımları ile tümleştirerekHEVC üzerine uygulanması literatürde ilk kez incelenmiştir. Bu inceleme sonucunda HEVC referansyazılımında kullanılan TZS isimli algoritmanın düşük-bit derinliğindeki görüntüler üzerinde kullanımıdurumunda performans kaybı oluşacağı çıkarılmıştır.
Anahtar Kelime:

Assessment of the performance of low Bit-Depth representation based motion estimation methods on HEVC

Öz:
In this study, a detailed comparative analysis of low bit-depth based motion estimation approaches has been performed on the latest video coding standard HEVC. Thus, actual performance of these approaches has been revealed in a full encoder whereas open loop performance evaluations were carried out in the past mostly. It has also been investigated for the first time in the literature to integrate these approaches with the sparse search based methods on HEVC to further accelerate low bit depth representation based motion estimation approaches. As a result of this work, it has been found that performance degradation will occur if the so-called TZS algorithm used in the HEVC reference software is directly combined with low-bit-depth images.
Anahtar Kelime:

A mixed integer mathematical model and a heuristic approach for two echelon location routing problem with simultaneous pickup and delivery

Öz:
This study considers Two Echelon Location Routing Problem with Simultaneous Pickup and Delivery (2E/LRP-SPD). In a two-echelon distribution network consisting of factories, warehouses and customers, the aim is to determine which facilities will be opened in which candidate regions and routing activities to be carried out among them. Routing activities include distributing and collecting activities. While distributing activities are performed from primary facilities (factory) to secondary facilities (depots) and secondary facilities to customers, collecting activities are done from customers to the secondary facilities and from secondary facilities to primary facilities. We propose a two-index node based mixed integer programming formulation for the 2E-LRPSPD. As the problem is in NP-Hard problem class, a constructive heuristic algorithm based on Clarke-Wright algorithm is developed to solve medium- and large- size problems. The performance of the heuristic approach is investigated on test instances derived from literature. Computational results show that heuristic algorithm gives good quality solutions for medium- and large-size instances in a very short computation time. Thus, the contribution of this study to the literature is to present an efficient mathematical model for solving small-size problems and to develop a constructive heuristic algorithm that produces very fast and high-quality solutions for medium and large-size problems.
Anahtar Kelime: integer programming

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. He Z.-L., Tsui C.-Y., Chan K.-K., Liou M. L., LowPower VLSI design for motion estimation using adaptive pixel truncation, IEEE Transactions on Circuits and Systems for Video Technology, 10 (5), 669–678, 2000.
  • 1. Drezner, Z. Steiner, G., Wesolowsky, G.O., OneFacility Location with Rectilinear Tour Distances, Naval Research Logistics Quarterly 32, 39 l-405, 1985.
  • 2. Wiegand T., Ohm J. R., Sullivan G. J., Han W.-J., Joshi R., Tan T. K., Ugur K., Special section on the joint call for proposals on High Efficiency Video Coding (HEVC) standardization, IEEE Transactions on Circuits and Systems for Video Technology, 20 (12), 1661–1666, 2010.
  • 2. Köksalan, M., Süral, H., Kırca, O., A LocationDistribution Application for a Beer Company, European Journal of Operational Research, 80, 16-24,1995.
  • 3. Sullivan G. J., Ohm J. R., Han W.-J., Wiegand T., Overview of the High Efficiency Video Coding (HEVC) standard, IEEE Transactions on Circuits and Systems for Video Technology, 22 (12), 1648–1667, 2012.
  • 3. Karaoğlan, İ., Altıparmak, F., A Memetic Algorithm for the Capacitated Location-Routing Problem with Mixed Backhauls, Computers and Operations Research, 55, 200-216, 2015.
  • 4. Tourapis A. M., Enhanced predictive zonal search for single and multiple frame motion estimation, Visual Communications and Image Processing 4671, 1069- 1079, 2002.
  • 4. Prodhon, C., Prins, C., A Survey on Recent Research on Location-Routing Problems, European Journal of Operations Research, 238, 1-17, 2014.
  • 5. Tang X., Dai S., Cai C., An analysis of TZ search algorithm in JMVC, International Conference on Green Circuits and Systems (ICGCS), 516-520, 2010.
  • 5. Salhi, S. and Rand, G., The Effect of Ignoring Routes When Locating Depots, European Journal of Operational Research, 39, 150-156, 1989.
  • 6. Koga T., Linuma K., Hirano A., Lijima Y., Ishiguro T., Motion compensated interframe coding for video conferencing, National Telecommunication Conference Proceedings, G5.3.1-5.3.5, 1981.
  • 6. Barış, S., Facility Location Decisions Under Vehicle Routing Considerations, Yüksek Lisans Tezi, Bilkent Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2002.
  • 7. R. Li, B. Zeng, M. Liou, A new three-step search algorithm for block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 4 (4), 438–442, 1994.
  • 7. Karaoğlan, İ., Altıparmak, F., Kara, İ., Dengiz, B., A Branch and Cut Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery, European Journal of Operational Research, 211(2), 318- 332, 2011.
  • 8. Po L.-M., Ma W.-C., A novel four-step search algorithm for fast block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 6 (3), 313- 317, 1996.
  • 8. Min, H., Jayaraman, V., Srivastava, R., Combined Location-Routing Problems: A Synthesis and Future Research Directions, European Journal of Operational Research, 108, 1–15, 1998.
  • 9. Zhu S., Ma K. K., A new diamond search algorithm for fast block-matching motion estimation, IEEE Transactions on Image Processing, 9 (2), 287-290, 2000.
  • 9. Nagy, G., Salhi, S., Location-Routing: Issues, Models and Methods, European Journal of Operational Research, 177, 649-672, 2007.
  • 10. Zhu C., Lin X., Chau L.-P., Hexagon-based search pattern for fast block motion estimation, IEEE Transactions on Circuits and Systems for Video Technology, 12 (5), 349-355, 2002.
  • 10. Drexl, M., Schneider, M., A Survey of Location Routing Problem, Technical Report LM-2013-03, 2013.
  • 11. Natarajan B., Bhaskaran V., Konstantinides K., Lowcomplexity block-based motion estimation via one-bit transforms, IEEE Transactions on Circuits and Systems for Video Technology, 7 (4), 702-706, 1997.
  • 11. Crainic, T. G.,Sgalambro, A., Service Network Design Models for Two-Tier City Logistics, Optimization Letters, 8, 1375–1387, 2014.
  • 12. Ertürk A., Ertürk S., Two bit transform for binary block motion estimation, IEEE Transactions On Circuits and Systems for Video Technology, 15 (7), 938-946, 2005.
  • 12. Boccia, M., Crainic, T.G., Sforza, A., Sterle, C., Location-Routing Models for Designing a Two-Echelon Freight Distribution System, Technical Report 2011- 06, CIRRELT, Montreal, 2011.
  • 13. Ertürk S., Multiplication-free one-bit transform for lowcomplexity block-based motion estimation, IEEE Signal Processing Letters, 14 (2), 109-112, 2007.
  • 13. Nagy, G., Salhi, S., Heuristic Algorithms for Single and Multiple Depot Vehicle Routing Problems with Pickups and Deliveries, European Journal of Operational Research, 162, 126-141, 2005.
  • 14. Urhan O., Ertürk S., Constrained one-bit transform for low-complexity block motion estimation, IEEE Transactions On Circuits and Systems for Video Technology, 17 (4), 478-482, 2007.
  • 14. Keçeci B., Altıparmak F., Kara İ., Heterogeneous Vehicle Routing Problem with Simultaneous Pickup and Delivery: Mathematical Formulations and a Heuristic Algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (2), 185-195, 2015.
  • 15. Çelebi A., Akbulut O., Urhan O., Ertürk S., Truncated gray-coded bit-plane matching based motion estimation and its hardware architecture, IEEE Transactions on Consumer Electronics, 55 (3), 1530-1536, 2009.
  • 15. Aydoğdu B, Özyörük B., Mathematical Model and Heuristic Approach for Solving Dynamic Vehicle Routing Problem with Simultaneous Pickup and Delivery: Random Iterative Local Search Variable Neighborhood Descent Search, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 563-580, 2020.
  • 16. Yavuz, S., Çelebi, A., Aslam, M., Urhan, O., Selective Gray-Coded Bit-Plane Based Low Complexity Motion Estimation and its Hardware Architecture, IEEE Transactions on Consumer Electronics, 62 (1), 76-84, 2016.
  • 16. Bayrak A., Özyörük B., Comparative Mathematical Models for Split Delivery Simultaneous Pickup and Delivery Vehicle Routing Problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 469-480, 2017.
  • 17. Aslam M., Çelebi A., Efficient hardware architecture for selective gray coded bit plane based low complexity motion estimation, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (1), 69-78, 2017.
  • 17. Hornstra, R., Silva, A., Roodbergen K. J., Coelho, L. C., The Vehicle Routing Problem with Simultaneous Pickup and Delivery and Handling Costs, Computers and Operations Research, 115, 104858, 2020.
  • 18. Choi, C., Jeong, J., Enhanced two-bit transform based motion estimation via extension of matching criterion, IEEE Transactions on Consumer Electronics, 56 (3), 1883-1889, 2010.
  • 18. Can Atasagun G., Karaoğlan İ., A Mathematical Model for the Time Dependent Vehicle Routing Problem with Simultaneous Pick-up and Delivery, Journal of the Faculty of Engineering and Architecture of Gazi University,34 (4), 1743-1756, 2019.
  • 19. Güllü M. K, Weighted constrained one-bit transform based fast block motion estimation, IEEE Transactions on Consumer Electronics, 57 (2), 751-755, 2011.
  • 19. Parragh, S.N., Doerner, K.F., Hartl, R.F., A Survey on Pickup and Delivery Problems Part I: Transportation Between Customers and Depot, Journal für Betriebswirtschaft, 58 (1), 21-51, 2008.
  • 20. Song C.-M., Guo Y., Wang X.-H, Liu D., Fuzzy quantization based bit transform for low bit-resolution motion estimation, Signal Processing: Image Communication, 28 (10), 1435-1447, 2013.
  • 20. Berbeglia, G., Cordeau, J., Gribkovskaia, I., Laporte, G., Static Pickup and Delivery Problems: A Classification Scheme and Survey, Top, 15, 1–31, 2007.
  • 21. Lee S., Jeon, G., Jeong, G., Fast motion estimation based on enhanced constrained one-bit transform, Electronics Letters, 50 (10), 746–748, 2014.
  • 21. Koç, Ç., Laporte, G., Tükenmez, İ., A Review of Vehicle Routing with Simultaneous Pickup and Delivery, Computers and Operations Research, 122, 104987, 2020.
  • 22. Lee H., Jeong J., Early termination scheme for binary block motion estimation, IEEE Transactions on Consumer Electronics, 53 (4), 1682-1686, 2007.
  • 22. Belgin, Ö., Karaoğlan, İ., Altıparmak, F., Two-Echelon Vehicle Routing Problem with Simultaneous Pickup and Delivery: Mathematical Model and Heuristic Approach, Computers & Industrial Engineering, 115, 1-16, 2018.
  • 23. Lee H., Jin S., Jeong J., Early termination algorithm for 2bt block motion estimation, Electronics Letters, 45 (8), 403-405, 2009.
  • 23. Demircan-Yıldız, E. A., Karaoğlan, İ., Altıparmak, F., Two Echelon Location Routing Problem with Simultaneous Pickup and Delivery: Mixed Integer Programming Formulations and Comparative Analysis, Lecture Notes on Computer Science, 9855, Editör: Paias, A., Ruthmair, M., Voß, Springer, 275-289, 2016.
  • 24. Urhan O., Constrained one-bit transform based motion estimation using predictive hexagonal pattern, Journal of Electronic Imaging, 16 (3), 033019, 2007.
  • 24. Clarke, G., Wright, J. V., Scheduling of Vehicles from Central Depot to a Number of Delivery Points, Operations Research, 12, 568-581, 1964.
  • 25. Urhan O., Constrained one-bit transform based fast block motion estimation using adaptive search range, IEEE Transactions on Consumer Electronics, 56 (3), 1868–1871, 2010.
  • 25. Boccia, M., Crainic, T.G., Sforza, A., Sterle, C., A Metaheuristic for a Two Echelon Location-Routing Problem, Lecture Notes in Computer Science, Springer, 6049, Editör: Festa, P., Berlin, 288-301, 2010.
  • 26. Kim I., Kim J., Jeon G., Jeong J., Low-complexity block-based motion estimation algorithm using adaptive search range adjustment, Optical Engineering, 51 (6), 067010, 2012.
  • 26. Nguyen VP., Prins C., Prodhon C., A Multi-Start Evolutionary Local Search for the Two-Echelon Location Routing Problem, Lecture Notes in Computer Science, 6373, Editör: Blesa M.J., Blum C., Raidl G., Roli A., Sampels M., Springer, Berlin, Heidelberg, 88-102, 2010.
  • 27. Urhan O., Truncated gray-coding based fast block motion estimation, Journal of Electronic Imaging, 22 (2), 023018, 2013.
  • 27. Nguyen, V.P., Prins, C., Prodhon, C., A Multi Start Iterative Local Search with Tabu List and Path Relinking for the Two-Echelon Location Routing Problem, Engineering Applications of Artificial Intelligence, 25, 56-71, 2012.
  • 28. Kim I., Jeong J., Binary block motion estimation using an adaptive search range adjustment technique, Journal of Automation and Control Engineering, 2(4), 376-380, 2014.
  • 28. Nguyen, V.P., Prins, C., Prodhon, C., Solving the TwoEchelon Location Routing Problem by a GRASP Reinforced by a Learning Process and Path Relinking, European Journal of Operational Research, 216, 113- 126, 2012.
  • 29. Telatar Z., Fast motion estimation in video sequences by edge detection, Journal of the Faculty of Engineering and Architecture of Gazi University, 24 (2), 245-255, 2009.
  • 29. Nikbakhsh, E., Zegordi, S., A Heuristic Algorithm and a Lower Bound for the Two-Echelon Location-Routing Problem with Soft Time Window Constraints, Scientia Iranica Transaction E: Industrial Engineering, 17, 36- 47, 2010.
  • 30. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/ trunk/doc/software-manual.pdf
  • 30. Contardo, C., Hemmelmayr, V., Crainic, T.G., Lower and Upper Bounds for the Two-Echelon Capacitated Location-Routing Problem, Computers & Operations Research, 39, 3185-3199, 2012.
  • 31. Govindan, K., Jafarian, A., Khodaverdi, R., Devika, K., Two Echelon Multiple Vehicle Location–Routing Problem with Time Windows for Optimization of Sustainable Supply Chain Network of Perishable Food, International Journal of Production Economics, 152, 9- 28, 2014.
  • 32. Bala, K., Brcanov, D., Gvozdenovic, N., Two-Echelon Location Routing Synchronized with Production Schedules and Time Windows, Central European Journal of Operations Research, 25, 525-543, 2017.
  • 33. Pichka, K., Bajgiran, A.H., Petering, M.E.H., Jang, J., Yue, X., The Two Echelon Open Location Routing Problem: Mathematical Model and Hybrid Heuristic, Computers & Industrial Engineering, 121, 97-112, 2018.
  • 34. Veenstra, M., Roodbergen, K., Coelho, L., Zhu, S., A Simultaneous Facility Location and Vehicle Routing Problem Arising in Healthcare Logistics in the Netherlands, European Journal of Operational Research, 268, 703-715, 2018.
  • 35. Wang, Y., Assogba, K., Liu, Y., Ma, X., Xu, M., Wang, Y., Two-Echelon Location-Routing Optimization with Time Windows Based on Customer Clustering, Expert Systems with Applications, 104, 244-260, 2018.
  • 36. Grüler, A., Juan, A., Klüter, A.,Rabe, M. A SimulationOptimization Approach for the Two-Echelon Location Routing Problem Arising in the Creation of Urban Consolidation Centres, Simulation in Produktion und Logistik, 17, 129-138, 2017.
  • 37. Darvish, M., Archetti, C., Coelho, L., Speranza, M. G., Flexible Two-Echelon Location Routing Problem, European Journal of Operational Research, 277, 1124– 1136, 2019.
  • 38. Yu, Z., Zhou, Y., Liu, X.F., The Two-Echelon MultiObjective Location Routing Problem Inspired by Realistic Waste Collection Applications: The Composable Model and a Metaheuristic Algorithm, Applied Soft Computing Journal, Applied Soft Computing Journal, 94, 106477, 2020.
  • 39. Karaoğlan, İ., Altıparmak, F., Kara, İ., Dengiz, B., The Location-Routing Problem with simultaneous Pickup and Delivery: Formulations and a Heuristic Approach, Omega, 40 (4), 465-477, 2012.
  • 40. Yu, V., Lin, S., Multi-start Simulated Annealing Heuristic for the Location Routing Problem with Simultaneous Pickup and Delivery. Applied Soft Computing, 24, 284-290, 2014.
  • 41. Yu, V., Lin, S., Solving the Location-Routing Problem with Simultaneous Pickup and Delivery by Simulated Annealing, International Journal of Production Research, 54 (2), 526-549, 2016.
  • 42. Abedinzadeh, S., Ghoroghi, A., Afshar, S., Barkhordari, M., A Two-Echelon Green Supply Chain with Simultaneous Pickup and Delivery, International Journal of Transportation Engineering and Technology, 3 (2), 12-18, 2017.
  • 43. Rahmani, Y., Cherif-Khettaf, W.R., Oulamara, A., The Two-Echelon Multi-Products Location-Routing Problem with Pickup and Delivery: Formulation and Heuristic Approaches, International Journal of Production Research, 54 (4), 999-1019, 2016.
  • 44. Fan, H., Wu, J., Li, X., Jiang, X., Presenting a MultiStart Hybrid Heuristic for Solving the Problem of TwoEchelon Location-Routing Problem with Simultaneous Pickup and Delivery (2E-LRPSPD), Journal of Advanced Transportation, 2020, 9743841, 2020.
  • 45. Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., and Semet, F., A Guide to Vehicle Routing Heuristic, The Journal of the Operational Research Society, 53, 512-522, 2002.
  • 46. Gajpal, Y., Abad, P., Saving-Based Algorithms for Vehicle Routing Problem with Simultaneous Pickup and Delivery, The Journal of the Operational Research Society, 61, 10,1498-1509, 2010.
  • 47. Johnson, D.S., Aragon, C.R., McGeogh, L.A., and Schevon, C., Optimization by Simulated Annealing: An Experimental Evaluation: Part 1. Graph Partitioning, Operations Research, Cilt 37, 865-891, 1989.
  • 48. Salhi, S., Nagy, G., A Cluster Insertion Heuristic for Single and Multiple Depot Vehicle Routing Problems with Backhauling, Journal of the Operational Research Society, 50, 1034–42, 1999.
  • 49. Angelelli, E., Mansini, R., The Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery, Quantitative Approaches to Distribution Logistics and Supply Chain Management, 519, Editörler: Klose, A., Speranza, M. G., Van Wassenhove, L. N., Springer, Berlin, 249-267, 2002.
  • 50. Archetti, C., Sperenza M. G., A Survey on Matheuristics for Routing Problems, EURO Journal on Computational Optimization, 2, 223–246, 2014.
  • 51. Yıldırım U.M., Çatay B., An Ant Colony-Based Matheuristic Approach for Solving a Class of Vehicle Routing Problems, Computational Logistics, ICCL 2015, Lecture Notes in Computer Science, 9335, Editörler: Corman F., Voß S., Negenborn R. , Springer, Cham, 2015.
  • 52. Boschetti, M., Maniezzo, V., A Set Covering Based Matheuristic for a Real-World City Logistics Problem, International Transactions in Operations Research, 22, 169-196, 2015.
  • 53. Kramer, R., Subramanian, A., Vidal, T., Cabral, L., A Matheuristic Approach for the Pollution-Routing Problem, European Journal of Operations Research, 243, 523-539, 2015.
  • 54. Mancini, S., A Real-Life Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet: Formulation and Adaptive Large Neighborhood Search based Matheuristic, Transportation Research Part C, 70, 100-112, 2016.
APA DEMIRCAN-YILDIZ E, Duvar R, KARAOGLAN I, Küçükmanisa A, ALTIPARMAK F, akbulut o, Taşyapı Çelebi A, Urhan O (2021). İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. , 807 - 822. 10.17341/gazimmfd.591293
Chicago DEMIRCAN-YILDIZ Ece Arzu,Duvar Ramazan,KARAOGLAN Ismail,Küçükmanisa Ayhan,ALTIPARMAK FULYA,akbulut orhan,Taşyapı Çelebi Aysun,Urhan Oğuzhan İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. (2021): 807 - 822. 10.17341/gazimmfd.591293
MLA DEMIRCAN-YILDIZ Ece Arzu,Duvar Ramazan,KARAOGLAN Ismail,Küçükmanisa Ayhan,ALTIPARMAK FULYA,akbulut orhan,Taşyapı Çelebi Aysun,Urhan Oğuzhan İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. , 2021, ss.807 - 822. 10.17341/gazimmfd.591293
AMA DEMIRCAN-YILDIZ E,Duvar R,KARAOGLAN I,Küçükmanisa A,ALTIPARMAK F,akbulut o,Taşyapı Çelebi A,Urhan O İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. . 2021; 807 - 822. 10.17341/gazimmfd.591293
Vancouver DEMIRCAN-YILDIZ E,Duvar R,KARAOGLAN I,Küçükmanisa A,ALTIPARMAK F,akbulut o,Taşyapı Çelebi A,Urhan O İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. . 2021; 807 - 822. 10.17341/gazimmfd.591293
IEEE DEMIRCAN-YILDIZ E,Duvar R,KARAOGLAN I,Küçükmanisa A,ALTIPARMAK F,akbulut o,Taşyapı Çelebi A,Urhan O "İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım." , ss.807 - 822, 2021. 10.17341/gazimmfd.591293
ISNAD DEMIRCAN-YILDIZ, Ece Arzu vd. "İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım". (2021), 807-822. https://doi.org/10.17341/gazimmfd.591293
APA DEMIRCAN-YILDIZ E, Duvar R, KARAOGLAN I, Küçükmanisa A, ALTIPARMAK F, akbulut o, Taşyapı Çelebi A, Urhan O (2021). İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 807 - 822. 10.17341/gazimmfd.591293
Chicago DEMIRCAN-YILDIZ Ece Arzu,Duvar Ramazan,KARAOGLAN Ismail,Küçükmanisa Ayhan,ALTIPARMAK FULYA,akbulut orhan,Taşyapı Çelebi Aysun,Urhan Oğuzhan İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no.2 (2021): 807 - 822. 10.17341/gazimmfd.591293
MLA DEMIRCAN-YILDIZ Ece Arzu,Duvar Ramazan,KARAOGLAN Ismail,Küçükmanisa Ayhan,ALTIPARMAK FULYA,akbulut orhan,Taşyapı Çelebi Aysun,Urhan Oğuzhan İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.34, no.2, 2021, ss.807 - 822. 10.17341/gazimmfd.591293
AMA DEMIRCAN-YILDIZ E,Duvar R,KARAOGLAN I,Küçükmanisa A,ALTIPARMAK F,akbulut o,Taşyapı Çelebi A,Urhan O İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 34(2): 807 - 822. 10.17341/gazimmfd.591293
Vancouver DEMIRCAN-YILDIZ E,Duvar R,KARAOGLAN I,Küçükmanisa A,ALTIPARMAK F,akbulut o,Taşyapı Çelebi A,Urhan O İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 34(2): 807 - 822. 10.17341/gazimmfd.591293
IEEE DEMIRCAN-YILDIZ E,Duvar R,KARAOGLAN I,Küçükmanisa A,ALTIPARMAK F,akbulut o,Taşyapı Çelebi A,Urhan O "İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34, ss.807 - 822, 2021. 10.17341/gazimmfd.591293
ISNAD DEMIRCAN-YILDIZ, Ece Arzu vd. "İki aşamalı yer seçimi ve eş zamanlı topla dağıt araç rotalama problemi: Karışık tam sayılı matematiksel model ve sezgisel yaklaşım". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/2 (2021), 807-822. https://doi.org/10.17341/gazimmfd.591293