Yıl: 2021 Cilt: 36 Sayı: 2 Sayfa Aralığı: 1075 - 1088 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.678990 İndeks Tarihi: 29-07-2022

İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi

Öz:
Dehidrojenasyon reaksiyonlarında Cr temelli katalizörler yaygınca kullanılmaktadır. Bu çalışmada, Cr içeriğinin katalizör yapısına, kromat türleri ve miktarları üzerine etkilerinin araştırılması amaçlanmıştır. Öncelikle katalizör desteği MCM-41 hidrotermal olarak sentezlenmiş, ardından farklı % kütle oranlarında xCr@MCM-41 (x:4,6,8,10) katalizörleri emdirme tekniği ile hazırlanmıştır. Reaksiyon için aktif monokromatlar en yüksek oranda 4Cr@MCM-41 katalizöründe tespit edilmiştir. Cr metalinin bu katalizör yapısında homojen dağıldığı gösterilmiştir. Uygun kristal boyutu, homojen metal dağılımı ve yüksek miktarda aktif monokromat içermesi yönleriyle seçilen 4Cr@MCM-41 katalizörü üzerinde katalitik testler(600℃, atmosferik) gerçekleştirilmiştir. Katalitik testler sonucunda 60. dakikaya kadar yüksek izobütan dönüşümleri(%80), 40. dakika sonrası ise yüksek izobüten seçicilikleri(%95) elde edilmiştir. Gözlenen yüksek dönüşümler, destek yapısındaki suyun kullanılarak katalizördeki tetrahedral koordinasyonlu $Cr(VI)O4^{-2}$ yapıların oluşturduğu $Cr(II)O2^{-2}$’ların aktif $Cr(III)O3^{-3}$ türlerine dönüşmesi ile açıklanmıştır. Reaksiyon sonrasında katalizörde sadece <kütlece % 0,1’lik karbon birikimi tespit edilmiş ve katalizör deaktivasyonun Cr form değişiminden kaynaklandığı gösterilmiştir. $Cr^{+6}$’ların$Cr^{+3}$’e dönüşümüne bağlı olarak, reaksiyon sonrasında kristalit boyutunun arttığı(%40) belirlenmiştir. Ayrıca bu form değişiminin katalizör yüzey asitliğinin özellikle Lewis asit sitelerinin azaltılmasını sağladığı böylece izobüten seçiciliğini arttırdığı ve kok oluşumunu engellendiği gösterilmiştir. Sentezlenen xCr@MCM-41 katalizörleri için kütlece %4 Cr içeriğinin, yüksek izobüten seçiciliği ve yüksek miktarda monokromat oluşumu açısından uygun bir oran olduğu görülmektedir.
Anahtar Kelime: karakterizasyon Cr@MCM-41 İzobütan dehidrojenasyonu

Investigation of the effectiveness of Cr@MCM-41 catalysts in isobutane dehydrogenation

Öz:
Cr-based catalysts are widely used in dehydrogenation reactions. In this study, it was aimed to investigate the effects of Cr content on catalyst structure, chromate type and amount. First, the catalyst support MCM-41 was synthesized hydrothermally, and then xCr@MCM-41 (x: 4,6,8,10) catalysts in different mass % ratios were prepared by the impregnation technique. The active monochromates for the reaction was obtained on 4Cr@MCM41 catalyst at the highest amount. It was shown that Cr metal homogeneously distributed in this catalyst structure. Catalytic tests (600℃, atmospheric) were carried out on the 4Cr@ MCM-41 catalyst selected for its proper crystal size, homogeneous metal distribution and high amount of active monochromate content. As a result of the catalytic tests, high isobutane conversions (80%) were obtained up to the 60th minute and high isobutene selectivity (95%) after the 40th minute. The observed high conversions were explained by the transformation of $Cr(II)O2^{-2}$, formedby tetrahedrally coordinated $Cr(VI)O4^{-2}$ structures in the catalyst, into active $Cr(III)O3^{-3}$ species by using the waterin the support structure. After the reaction, it was shown that only <0.1% carbon deposition was detected in the catalyst and the catalyst deactivation was caused by the Cr form change. It was determined that the crystallite size increased (40%) after the reaction, depending on the conversion of$Cr^{+6}$ to$Cr^{+3}$. It was also shown that this form change enabled the catalyst surface acidity to be reduced, especially Lewis acid sites, thus increasing isobutene selectivity and preventing coke formation. For xCr@MCM-41 catalysts synthesized by impregnation technique, a 4%Cr content by mass appears to be an appropriate ratio for high isobutene selectivity and high amount of monochromate formation.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Chen, M., Zhao H., Yang J., Zhao J., Chou L., The catalytic dehydrogenation of isobutane and the stability enhancement over Fe incorporated SBA-15, Microporous and Mesoporous Materials, 266, 117-125, 2018.
  • 2. Tian Y., Liu X., Rood M. J., Yan Z., Study of coke deposited on a VOx-K2O/γ-Al2O3 catalyst in the nonoxidative dehydrogenation of isobutane, Applied Catalysis A: General, 545, 1-9, 2017.
  • 3. Dong A., Wang K., Zhu S. Yang G., Wan, X., Facile Preparation of PtSn-La/Al2O3 Catalyst with large pore size and its improved catalytic performance for isobutane dehydrogenation, Fuel Processing Technology, 158, 218-225, 2017.
  • 4. Kraemer S., Rondinone A. J., Tsai Y., Schwartz V., Wu Z., Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes, Catalysis Today, 263, 84-90, 2016.
  • 5. Fridman V.Z, Xing R., Investigating the CrOx/Al2O3 dehydrogenation catalyst model: II. Relative activity of the chromium species on the catalyst surface, Applied Catalysis A: General, 530, 154-165, 2017.
  • 6. Fridman V.Z, Xing R., Severance M., Investigating the CrOx/Al2O3 dehydrogenation catalyst model: I. identification and stability evaluation of the Cr species on the fresh and equilibrated catalysts, Applied Catalysis A: General, 523, 39-53, 2016.
  • 7. Li P., Lang W., Xia K., Luan L. Guo Y., The promotion effects of Ni on the properties of Cr/Al catalysts for propane dehydrogenation reaction, Applied Catalysis A: General, 522, 172-179, 2016.
  • 8. Salaeva A.A., Salaev M.A., Vodyankina O. V., Mamontov G. V., Synergistic effect of Cu and Zn modifiers on the activity of CrOx/Al2O3 catalysts in isobutane dehydrogenation, Applied Catalysis A: General, 581, 82-90, 2019.
  • 9. Kim T. H., Kang K. H., Baek M., Song J. H., Hong U.G., Park Choi W.C., Park Y., Song I.K., Dehydrogenation of propane to propylene eith lattice oxygen over CrOy/Al2O3-ZrO2 Catalysts. Molecular Catalysis, 433, 1-7, 2017.
  • 10. Gao X., Lu W., Hu S., Li W., Lu A., Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation, Chinese Journal of Catalysis, 40 (2), 184-191, 2019.
  • 11. Zhao H., Song H., Miao Z., Chou L., Isobutane dehydrogenation over chromia alumina catalysts prepared from MIL-101: Insight into chromium species on activity and selectivity, Journal of Energy Chemistry, 23 (6),708-716, 2014.
  • 12. Nemykina E.I., Pakhomov N.A., Danilevich V.V., Rogov V.A., Zaikovskii V.I., Larina T.V., Molchanov V.V., Effect of chromium content on the properties of a microspherical alümina-chromium catalyst for ısobutane dehydrogenation prepared with the use of a centrifugal thermal activation product of gibbsite, Kinetics and Catalysis, 51 (6), 898-906, 2010.
  • 13. Baronskiy M.G., Kostyukov A.I., Larina T.V., Snytnikov V.N., Zhuzhgov, A.V., Photoluminescence of surface chromium centers in the Cr/Al2O3 system that is active in isobutane dehydrogenation, Materials Chemistry and Physics, 234, 403-410, 2019.
  • 14. Li L., Zhu W., Shi L., Liu Y., Liu H., Ni Y., Liu S., Zhau H., Liu Z., The effect of ethanol on the performance of CrOx/SiO2 catalysts during propane dehydrogenation, Chinese Journal of Catalysis, 37 (3), 359-366, 2016.
  • 15. Deng J., Zhang L., Liu C., Xia Y., Dai H., Singlecrystalline mesoporous CaO supported Cr–V binary oxides: Highly active catalysts for the oxidative dehydrogenation of isobutane, Catalysis Today, 164 (1), 347-352, 2011.
  • 16. Asghari E., Haghighi M., Rahmani F, CO2- Oxidative dehydrogenation of ethane to ethylene over Cr/MCM41 nanocatalyst synthesized via hydrothermal/impregnation methods: Influence of chromium content on catalytic properties and performance, Journal of Molecular Catalysis A: Chemical, 418-419, 115-124, 2016.
  • 17. 17.Ajayi B.P., Jermy B.R., Ogunronbi K.E., Abussaud B.A., Al-Khattaf S., N-butane dehydrogenation over mono and bimetallic MCM-41 catalysts under oxygen free atmosphere, Catalysis Today, 204, 189-196, 2013.
  • 18. Kilicarslan S., Dogan M., Dogu, T., Cr Incorporated MCM-41 Type Catalysts for Isobutane Dehydrogenation and Deactivation Mechanism, Industrial & Engineering Chemistry Research, 52 (10), 3674-3682, 2013.
  • 19. Kilicarslan S., Dogan M., Dogu T., Synthesis and characterization of Ca-Cr-MCM-41 catalysts for isobutane dehydrogenation, Journal of The Faculty of Engineering and Architecture of Gazi University,, 29 (3), 459-467, 2014.
  • 20. Cheng Y., Zhou L., Xu J., Miao C., Gao Z., Chromiumbased catalysts for ethane dehydrogenation: Effect of SBA-15 support, Microporous and Mesoporous Materials, 234, 370-376, 2016.
  • 21. Al-Awadi A. S., El-Toni A. M., Al-Zahrani S. M., Abasaeed A. E., Al-Fatesh A., Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Crsupport interaction for oxidative dehydrogenation of ethane with carbon dioxide, Applied Catalysis A: General, 584, 117114, 2019.
  • 22. Sangwan P., Kumar H., Synthesis, Characterization, and antibacterial activities of chromium oxide nanoparticles against klebsiella pneumoniae, Asian J Pharm Clin Res, 10 (2), 206-209, 2017.
  • 23. Farzaneh F.F., Farzaneh M.N., Najafi M., Synthesis and characterization of Cr2O3 nanoparticles with triethanolamine in water under microwave irradiation, Journal of Sciences, Islamic Republic of Iran, 22 (4), 329-333, 2011.
  • 24. Mohanapandian K., Krishnan A., Synthesis, structural, morphological and optical properties of Cu2+, International Journal of Advanced Engineering Technology, VII, II, 273-279, 2016.
  • 25. Latha K.P., Sundar S.M., Synthesis of chromium oxide nanoparticles at different pH and their structural and optical properties, 11 (1),111-122, 2020.
  • 26. Mohammed G.H., Hassan T.B., Abdulhamied Z.T., Structural characterization of NiO/Cr2O3 composites and hydrothermal synthesis, properties gas sensing, Journal of Al-Nahrain University, 21 (1), 59-64, 2018.
  • 27. Fang Y., Liu B., Terano M., Photo-stability of surface chromate species on Phillips CrOx/SiO2 catalysts isothermally calcined at various temperatures, probed by high resolution X-ray photoelectron spectroscopy, Applied Catalysis A: General 279, 131–138, 2005.
  • 28. Shee, D., Sayri, A., Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts, Applied Catalysis A: General, 389, 155–164, 2010.
  • 29. Mahendinan, C., Sangeetha, P., Vijayan, P., Sardhar Basha, S.J., Shanthi, K., Vapour phase oxidation of tatralin over Cr and Fe substituted MCM-41 molecular sieves, Journal of Molecular Catalysis A: Chemical, 275, 84-90, 2007.
  • 30. Marques, F.C., Canela, M. C., Stumbo, A.M., Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase, Catalysis Today, 133–135, 594–599, 2008.
  • 31. Zhang, L., Zhao, Y., Dai, H., He, H., Au, C.T., A comparative investigation on the properties of Cr-SBA15 and CrOx/SBA-15, Catalysis Today, 131, 42–54, 2008.
  • 32. Sun, B., Reddy, E.P., Smirniotis, P.G., Effect of Cr+6 concentration in Cr incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis, Applied Catalysis B: Enviromental, 57, 139-149, 2005.
  • 33. Takehira, K., Ohishi, Y., Shishido, T., Kawabata, T., Takaki, K., Zhang, Q., Wang, Y., Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2, Journal of Catalysis, 224, 404-416, 2004.
  • 34. Çalık, D., Tekstil atıksularında bulunan reaktif bir boyanın fotokatalitik oksidasyonu, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 2008.
  • 35. Ogonowski J., Skrzyn´ska E., Deactivation of VMgOx catalysts by coke in the process of isobutane dehydrogenation with carbon dioxide, Catal. Lett., 121, 234–240, 2008.
  • 36. Cheng M., Zhao H., Yang J., Zhao J., Yan L., Song H., Chou L., The catalytic dehydrogenation of isobutane and the stability enhancement over Fe incorporated SBA-15, Microporous and Mesoporous Materials, 266, 117-125, 2018.
  • 37. Rodemerck U., Stoyanova M., Kondratenko E. V., Linke D., Influence of the kind of VOx structures in VOx/MCM-41 on activity,selectivity and stability in dehydrogenation of propane and isobutane, Journal of Catalysis, 352, 256–263, 2017.
  • 38. Natarajan P., Abbas Khan H., Yoon S., Jung K., Onepot synthesis of Pt–Sn bimetallic mesoporous alumina catalysts with worm-like pore structure for n-butane dehydrogenation, Journal of Industrial and Engineering Chemistry, 63, 380–390, 2018.
  • 39. Puurunen, R.L., Airaksinen, S.M.K., Krause, A.O.I., Chromium(III) supported on aluminum-nitride-surfaced Al2O3: characteristics and dehydrogenation activity, Journal of Catalysis, 213, 281–290, 2003.
  • 40. Ohishi, Y., Kawabata, T., Shishido, T., Takaki, K., Zhang, Q., Wang, Y., Takehira, K., Dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 catalyst, Journal of Molecular Catalaysis A: Chemical, 230, 49- 58, 2005.
  • 41. Elzinga, E.J., Cirmo, A., Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in Chromite Ore Processing Residue (COPR), J Hazard Mater., 183(1-3), 145-54, 2010.
APA CETINYOKUS S, Dogan M, MAZLUM Z (2021). İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. , 1075 - 1088. 10.17341/gazimmfd.678990
Chicago CETINYOKUS SALIHA,Dogan Meltem,MAZLUM Zuhal İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. (2021): 1075 - 1088. 10.17341/gazimmfd.678990
MLA CETINYOKUS SALIHA,Dogan Meltem,MAZLUM Zuhal İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. , 2021, ss.1075 - 1088. 10.17341/gazimmfd.678990
AMA CETINYOKUS S,Dogan M,MAZLUM Z İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. . 2021; 1075 - 1088. 10.17341/gazimmfd.678990
Vancouver CETINYOKUS S,Dogan M,MAZLUM Z İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. . 2021; 1075 - 1088. 10.17341/gazimmfd.678990
IEEE CETINYOKUS S,Dogan M,MAZLUM Z "İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi." , ss.1075 - 1088, 2021. 10.17341/gazimmfd.678990
ISNAD CETINYOKUS, SALIHA vd. "İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi". (2021), 1075-1088. https://doi.org/10.17341/gazimmfd.678990
APA CETINYOKUS S, Dogan M, MAZLUM Z (2021). İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(2), 1075 - 1088. 10.17341/gazimmfd.678990
Chicago CETINYOKUS SALIHA,Dogan Meltem,MAZLUM Zuhal İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no.2 (2021): 1075 - 1088. 10.17341/gazimmfd.678990
MLA CETINYOKUS SALIHA,Dogan Meltem,MAZLUM Zuhal İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.36, no.2, 2021, ss.1075 - 1088. 10.17341/gazimmfd.678990
AMA CETINYOKUS S,Dogan M,MAZLUM Z İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(2): 1075 - 1088. 10.17341/gazimmfd.678990
Vancouver CETINYOKUS S,Dogan M,MAZLUM Z İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(2): 1075 - 1088. 10.17341/gazimmfd.678990
IEEE CETINYOKUS S,Dogan M,MAZLUM Z "İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36, ss.1075 - 1088, 2021. 10.17341/gazimmfd.678990
ISNAD CETINYOKUS, SALIHA vd. "İzobütan dehidrojenasyonunda Cr@MCM-41 katalizörlerinin etkinliğinin incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/2 (2021), 1075-1088. https://doi.org/10.17341/gazimmfd.678990