Yıl: 2021 Cilt: 36 Sayı: 4 Sayfa Aralığı: 1875 - 1892 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.815361 İndeks Tarihi: 29-07-2022

Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi

Öz:
Teknoloji değişimlerinin izlnemesi, karar vericiler için üretim sistemlerinde verimlilik ve etkinliği sağlayacak sistemleri tanımalarını sağlamaktadır. Bu nedenle, pratikte teknolojik gelişmeleri takip etmek çok önemli hale gelmiştir. Bu çalışmanın amacı, istatistiksel kontrol grafiklerini kullanarak iş sağlığı ve güvenliği alanındaki güvenlik teknolojilerinin gelişimini takip etmektir. Bu amaçla, güvenlik teknolojileri ile ilgili patent verileri, istatistiksel kontrol grafiklerinden I-MR grafiğini (individual moving range) oluşturmak için kullanılmıştır. Bununla birlikte, zaman serisi analizi de yürütülmüştür. Bu çalışmada, iş sağlığı ve güvenliği (İSG) alanındaki güvenlik teknolojilerine odaklanan çalışma sayısı son derece sınırlı düzeyde olup çalışmanın özgün yönünü oluşturmaktadır. Bu çalışmada elde edilen sonuçlara göre, tek bir teknoloji tahmin modelinin uzun vadeli kullanılması yanıltıcı olduğunu göstermiştir. Bununla birlikte, en uygun tahminmodeli 1947 ile 1988 ve 1988 ile 2012 dönemleri için tek üstel düzleştirme modelidir (single exponential smoothing “with optimal ARIMA parameters”).2011 ile 2018 dönemi için ise en uygun modeli ikinci dereceden zaman serisi modeli (the quadratic time series model) en uygun modeldir.
Anahtar Kelime: İstatistiksel kontrol grafikleri I-MR kontrol grafiği patent analizi

Monitoring technological changes with statistical control charts based on patent data

Öz:
Technology forecasting constitutes the basis of technology development and investment in technology. In a dynamic environment where technology is rapidly evolving and growing, the need to check the availability of a single prediction model has become an important research topic. The aim of this study is to follow the development of safety technologies in the field of occupational health and safety by using statistical quality control charts. Expanding the I-MR control chart rules used in monitoring the reliability of the technology forecasting model and considering the safety technologies in the field of occupational health and safety (OHS), which were previously discussed in the literature, are the original aspects of the study. At the beginning of the study, 91,580 patent data, was anlaysed using the United States Patent and Trademark Office (USPTO) database during including 1942-2020 (December) period. Time series modeling is performed using patent data on safety technologies, and I-MR graph is created using residual values of the model. The reliability of the model is monitored by controlling significant deviations with the obtained I-MR graphics. In addition, an S-curve is created for the patent numbers. The results of this study show that using a single technology forecasting model for a long period of time is misleading. Additionally, the forecast model for the period between 1942 and 2020 should be updated in various periods. Occupational health and safety technologies are an emerging technology field and appear to be incentives for policy makers and safety engineers to allocate resources.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Shih, M. J., Liu, D. R., & Hsu, M. L., Discovering competitive intelligence by mining changes in patent trends. Expert Systems with Applications, 37 (4), 2882- 2890, 2010.
  • 2. Badri, A., Boudreau-Trudel, B., & Souissi, A. S., Occupational health and safety in the industry 4.0 era: A cause for major concern?. Safety Science, 109, 403-411, 2018.
  • 3. Saritas, O., & Burmaoglu, S., The evolution of the use of Foresight methods: a scientometric analysis of global FTA research output. Scientometrics, 105 (1), 497-508, 2015.
  • 4. Karadal, F., Türk, M., İşletmelerde Teknoloji Yönetiminin Geleceği. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1 (1), 59-71, 2008.
  • 5. Brocal, F., González, C., & Sebastián, M. A., Technique to identify and characterize new and emerging risks: A new tool for application in manufacturing processes. Safety science, 109, 144-156, 2018.
  • 6. Hämäläinen, P., The effect of globalization on occupational accidents. Safety Science, 47 (6), 733-742, 2009.
  • 7. National Academies of Sciences, Engineering, and Medicine., A smarter national surveillance system for occupational safety and health in the 21st century. National Academies Press. 7, 2018.
  • 8. Özfırat P.M., A New Risk Analysis Methodology Integrating Fuzzy Prioritization Method And Failure Modes And Effects Analysis, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (4),755-768, 2014
  • 9. Ersoy M., Celik M.Y., Yesilkaya L., Colak O., Combination of Fine-Kinney and gra methods to solve occupational health and safety problems, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 752-770, 2019.
  • 10. Molero, G. D., Santarremigia, F. E., Poveda-Reyes, S., Mayrhofer, M., Awad-Núñez, S., & Kassabji, A., Key factors for the implementation and integration of innovative ICT solutions in SMEs and large companies involved in the multimodal transport of dangerous goods, European Transport Research Review, 11 (1), 28, 2019.
  • 11. Korkusuz A.Y., İnan U.H., Özdemir Y., Başlıgil H., Occupational health and safety performance measurement in healthcare sector using integrated multi criteria decision making methods, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (1), 81-96, 2020.
  • 12. Huang, L., & Ren, J., The negative impact of emerging technology: A Literature Review. In 2010 International Conference on E-Business and E-Government, 2576- 2579, IEEE., May. 2010,
  • 13. Myers, M. L., Anticipation of risks and benefits of emerging technologies: A prospective analysis method. Human and Ecological Risk Assessment: An International Journal, 13 (5), 1042-1052, 2007.
  • 14. Fernández, F. B., & Pérez, M. Á. S., Analysis and modeling of new and emerging occupational risks in the context of advanced manufacturing processes. Procedia Engineering, 100, 1150-1159, 2015.
  • 15. Song, B., & Suh, Y., Identifying convergence fields and technologies for industrial safety: LDA-based network analysis. Technological Forecasting and Social Change, 138, 115-126, 2019.
  • 16. Dündar, T., RFID-based system proposal forenabling the use of personal protective equipment in occupational health and safety. Master Thesis (Supervisors: Assoc. Prof. Dr. Tarık Arıkan Saygılı and Assist. Prof. Dr. Gökhan Kılıç), Izmir University of Economics, İzmir, 2018.
  • 17. Yakişik, H., & Çetin, A., Eğitim, Sağlık ve Teknoloji Düzeyinin Ekonomik Büyüme Üzerindeki Etkisi: ARDL Sınır Test Yaklaşımı. Sosyoekonomi, 21 (1), 2014.
  • 18. Tunç, H., Bir Yenilik Göstergesi Olarak Patent ve Türkiye Patent Performansı. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, 2008.
  • 19. Narin, F., & Olivastro, D. Technology indicators based on patents and patent citations. In Handbook of Quantitative Studies Of Science and Technology, 465- 507, 1988.
  • 20. Chen, C. H., Ting, C. K., & Nojima, Y., Special issue on soft computing for big data and social informatics. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 21 (11), 2799-2800, 2017.
  • 21. Tsao, C. C., Fan, C. Y., & Chang, P. C., A patent quality classification model based on artificial immune system. In Proceedings of the ASE BigData & SocialInformatics 2015, NY-United States, 1-7, 7-9 October, 2015.
  • 22. Arroyo, P. A. F. 2015. Metric Learning for Patent Similarity, Master Of Science Degree Thesis, University of Campinas, Institute of Computing, Ana Regina Machado, 2015.
  • 23. Altuntas, S., Dereli, T., & Kusiak, A., Forecasting technology success based on patent data. Technological Forecasting and Social Change, 96, 202-214. 2015.
  • 24. Bacioiu, G. M., & Pasek, Z. J., Method of Technology Analysis Based on Patent Examination and Design Methodology used to Determine the Technological Progress in Blood Pressure Monitors. International Journal of Innovation and Technology Management, 9 (04), 1250027, 2012.
  • 25. Jun, S., IPC Code Analysis of Patent Documents Using Association Rules and Maps–Patent Analysis of Database Technology. In Database Theory and Application, Bio-Science and Bio-Technology, Springer, Berlin, Heidelberg, 21-30, 2011.
  • 26. Yılmaz N., Şenol M.B., A model and application of occupational health and safety risk assessment, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 77-87, 2017.
  • 27. Wu, D., & Li, Z., Work safety success theory based on dynamic safety entropy model. Safety science, 113, 438- 444, 2019.
  • 28. Niu, Y., Lu, W., Xue, F., Liu, D., Chen, K., Fang, D., & Anumba, C., Towards the “third wave”: An SCOenabled occupational health and safety management system for construction, Safety science, 111, 213-223, 2019.
  • 29. McNinch, M., Parks, D., Jacksha, R., & Miller, A., Leveraging IIoT to Improve Machine Safety in the Mining Industry, Mining, Metallurgy & Exploration, 36 (4), 675-681, 2019.
  • 30. Jeon, J. and Suh, Y., Multiple patent network analysis for identifying safety technology convergence, Data Technologies and Applications, 53 (3), 269-285, 2019.
  • 31. Durmusoglu, A., Updating technology forecasting models using statistical control charts. Kybernetes, 47 (4), 672-688, 2018.
  • 32. Martino, J. P., Technological forecasting for decision making. Elsevier, USA, Editor: McGraw-Hill, 1993.
  • 33. Chen, H., Zhang, G., Zhu, D., & Lu, J., A patent time series processing component for technology intelligence by trend identification functionality, Neural Computing and applications, 26 (2), 345-353, 2015.
  • 34. Lokuhitige, S., & Brown, S., Forecasting Maturity of IoT Technologies in Top 5 Countries Using Bibliometrics and Patent Analysis. In 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Nanjing-China, 338-341, 12-14 October, 2017.
  • 35. Smith, M., & Agrawal, R., A Comparison of Time Series Model Forecasting Methods on Patent Groups, In MAICS,1353, 167-173, 2015.
  • 36. Dikta, G., Time series methods to forecast patent filings. In Forecasting Innovations, Editors: Hingley P., Nicolas M., Springer, Berlin, Heidelberg, 95-124, 2006.
  • 37. Altuntaş, F., & Yilmaz, M.K., Patent analizi ile teknoloji ağlarının oluşturulması, Girişimcilik ve İnovasyon Yönetimi Dergisi, 6 (2), 97-129, 2017.
  • 38. Hou, J. L., & Lin, H. Y., A multiple regression model for patent appraisal, Industrial Management & Data Systems, 106 (9), 1304-1332, 2006.
  • 39. Dehghani Madvar, M., Aslani, A., Ahmadi, M. H., & Karbalaie Ghomi, N. S., Current status and future forecasting of biofuels technology development, International Journal of Energy Research, 43 (3), 1142- 1160, 2019.
  • 40. Mao, G., Shi, T., Zhang, S., Crittenden, J., Guo, S., & Du, H., Bibliometric analysis of insights into soil remediation, Journal of soils and sediments, 18 (7), 2520-2534, 2018.
  • 41. Hamidi, H., & Fazeli, K., Using Internet of Things and biosensors technology for health applications, IET Wireless Sensor Systems, 8 (6), 260-267, 2018.
  • 42. Sheikh, N. J., & Sheikh, O., Forecasting of biosensor technologies for emerging point of care and medical IoT applications using bibliometrics and patent analysis. In 2016 Portland International Conference on Management of Engineering and Technology (PICMET), Honolulu, Hawaii- USA, 3082-3093, 4-8 September, 2016.
  • 43. Cho, Y., & Daim, T., OLED TV technology forecasting using technology mining and the Fisher-Pry diffusion model, Foresight, 18 (2), 117-137, 2016.
  • 44. Madvar, M. D., Khosropour, H., Khosravanian, A., Mirafshar, M., Azaribeni, A., Rezapour, M., & Nouri, B., Patent-Based Technology Life Cycle Analysis: The Case of the Petroleum Industry, 10 (4),72-79, 2016.
  • 45. Sepúlveda, J., Paternina, A., & Suarez, A., Patent applications as source for measuring technological performance, Scientometrics, 98 (2), 1385-1395, 2014.
  • 46. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P., Forecasting emerging technologies: Use of bibliometrics and patent analysis, Technological Forecasting and Social Change, 73 (8), 981-1012, 2006.
  • 47. Wu, L., & Wu, L., Pharmaceutical patent evaluation and licensing using a stochastic model and Monte Carlo simulations, Nature biotechnology, 29 (9), 798, 2011.
  • 48. Ernst, H., Legler, S., & Lichtenthaler, U., Determinants of patent value: Insights from a simulation analysis, Technological Forecasting and Social Change, 77 (1), 1- 19, 2010.
  • 49. Wang, P., Cockburn, L. M., & Puterman, M. L., Analysis of patent data—a mixed-Poisson-regressionmodel approach, Journal of Business & Economic Statistics, 16 (1), 27-41, 1998.
  • 50. Doğanavşargil, E., & Fattori, M., Decision tree analysis as a tool to optimise patent current awareness bulletins, World Patent Information, 30 (3), 212-219, 2008.
  • 51. Beveratos, P., Freire, M., Guglielmi, M., & Lascar, S., A tool to support the patent process: The patent decision tree, In International astronautical federation–56th international astronautical congress, Fukuoka- Japan, 5028-37, 17-21 October, 2005.
  • 52. Xiao, L., Wang, G., & Liu, Y., Patent Text Classification Based on Naive Bayesian Method. In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Zhaiiang UniversityChina, 57-60, 8-9 December 2018.
  • 53. Lee, K., Park, I., & Yoon, B., An approach for r&d partner selection in alliances between large companies, and small and medium enterprises (smes): Application of bayesian network and patent analysis, Sustainability, 8 (2), 117, 2016.
  • 54. Choi, S., & Jun, S., Vacant technology forecasting using new Bayesian patent clustering, Technology Analysis & Strategic Management, 26 (3), 241-251, 2014.
  • 55. Jun, S., & Lee, S., Patent analysis using Bayesian network models, International Journal of Software Engineering and Its Applications, 7 (3), 205-212, 2013.
  • 56. Lee, K., Go, D., Park, I., & Yoon, B., Exploring Suitable Technology for Small and Medium-Sized Enterprises (SMEs) Based on a Hidden Markov Model Using Patent Information and Value Chain Analysis, Sustainability, 9 (7), 1100, 2017.
  • 57. Grimaldi, M., Cricelli, L., Di Giovanni, M., & Rogo, F., The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning, Technological forecasting and social change, 94, 286-302, 2015.
  • 58. Wang, X., & Carlsson, C., Patent-related decisionmaking with fuzzy real option analysis, International Journal of Mathematics in Operational Research, 9 (4), 467-486, 2016.
  • 59. Collan, M., Fuller, R., Wang, X., & Mezei, J., Numerical patent analysis with the fuzzy pay-off method: valuing a compound real option, In 2011 Fourth International Conference on Business Intelligence and Financial Engineering, Whan- Hubei China, 405-409, 17-18 October, 2011.
  • 60. Collan, M., & Heikkilä, M., Enhancing Patent Valuation with the Pay-off Method, Journal of Intellectual Property Rights, 16, 377-384, 2011.
  • 61. Huang, M., Zolnoori, M., Balls-Berry, J. E., Brockman, T. A., Patten, C. A., & Yao, L., Technological Innovations in Disease Management: Text Mining US Patent Data From 1995 to 2017, Journal of medical Internet research, 21 (4), e13316, 2019.
  • 62. Lai, C. Y., Hwang, S. Y., & Wei, C. P., On the Patent Claim Eligibility Prediction Using Text Mining Techniques, In Proceedings of the 51st Hawaii International Conference on System Sciences, January, 2018.
  • 63. Abbas, A., Zhang, L., & Khan, S. U., A literature review on the state-of-the-art in patent analysis, World Patent Information, 37, 3-13, 2014.
  • 64. Tseng, Y. H., Lin, C. J., & Lin, Y. I., Text mining techniques for patent analysis, Information Processing & Management, 43 (5), 1216-1247, 2007.
  • 65. Yoon, B., & Park, Y., A text-mining-based patent network: Analytical tool for high-technology trend, The Journal of High Technology Management Research, 15 (1), 37-50, 2004.
  • 66. Altuntas, S., Dereli, T., & Kusiak, A., Analysis of patent documents with weighted association rules, Technological Forecasting and Social Change, 92, 249- 262, 2015.
  • 67. He, C., & Loh, H. T., Pattern-oriented associative rulebased patent classification, Expert Systems with applications, 37 (3), 2395-2404, 2010.
  • 68. Haegeman, K., Marinelli, E., Scapolo, F., Ricci, A., & Sokolov, A., Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration?, Technological Forecasting and Social Change, 80 (3), 386-397, 2013.
  • 69. Durmuşoğlu, A. Effects of clean air act on patenting activities in chemical industry: learning from past experiences. Sustainability, 9 (5), 862, 2017.
  • 70. İSG Risk Değerlendirme Yönetmeliği., https://www.resmigazete.gov.tr/eskiler/2012/12/20121 229-13.htm. Yayın tarihiAralık 29, 2012. Erişim Tarihi Ekim 10,.2020, 2012.
  • 71. Montgomery, D. C., Jennings, C. L., & Kulahci, M., Introduction to time series analysis and forecasting, John Wiley & Sons, USA, 2015.
  • 72. Lewis, C. D., Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting, Butterworth-Heinemann, London, 1982.
  • 73. Montgomery, D. C., & Runger, G. C., Applied statistics and probability for engineers, John Wiley & Sons, USA, 2014.
  • 74. Montgomery, D. C., Introduction to statistical quality control, John Wiley & Sons, USA, 2009.
  • 75. Malinin, L., Technology selection based on main parameters of value and fuzzy logic, International Journal of Business Innovation and Research, 11 (3), 431-443, 2016.
  • 76. Kuikka, V., Nikkarila, J. P., & Suojanen, M., A technology forecasting method for capabilities of a system of systems, In 2015 Portland International Conference on Management of Engineering and Technology (PICMET), Portland OR-USA, 2139-2150. 2-6 August, 2015.
  • 77. Sun, J. G., Tan, R., & Guo, J., Research on IFR of technological evolution bifurcations, Procedia engineering, 131, 590-600, 2015.
  • 78. Tang, N., Hu, H., Xu, F., & Zhu, F., Personalized safety instruction system for construction site based on internet technology, Safety science, 116, 161-169, 2019.
  • 79. Wu, D., & Li, Z., Work safety success theory based on dynamic safety entropy model, Safety science, 113, 438- 444, 2019.
  • 80. Altuntas, F. & Gök, M.Ş. Technological evolution of wind energy with social network analysis, Kybernetes, 50 (5), 1180-1211, 2021.
  • 81. Altuntas, F. & Gök, M.Ş. Analysis of patent documents with utility mining: a case study of wind energy technology, Kybernetes, 50 (9), 2548-2582, 2020.
  • 82. Altuntaş, F. & Akgül, A.K. Veri madenciliği ile teknolojilerin değerlendirilmesi: radyo frekansı ile tanımlama (RFID) teknolojileri üzerine bir uygulama, Verimlilik Dergisi, 4, 65-86. 2019.
  • 83. Lopez, G. Generalized construction of trend resistent 2- level split-plot designs, Master Of Science Degree Thesis, Rochester Institute Of Technology, Newyork, 2007.
APA MUTLU N, Altuntas S (2021). Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. , 1875 - 1892. 10.17341/gazimmfd.815361
Chicago MUTLU Nazlı Gulum,Altuntas Serkan Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. (2021): 1875 - 1892. 10.17341/gazimmfd.815361
MLA MUTLU Nazlı Gulum,Altuntas Serkan Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. , 2021, ss.1875 - 1892. 10.17341/gazimmfd.815361
AMA MUTLU N,Altuntas S Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. . 2021; 1875 - 1892. 10.17341/gazimmfd.815361
Vancouver MUTLU N,Altuntas S Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. . 2021; 1875 - 1892. 10.17341/gazimmfd.815361
IEEE MUTLU N,Altuntas S "Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi." , ss.1875 - 1892, 2021. 10.17341/gazimmfd.815361
ISNAD MUTLU, Nazlı Gulum - Altuntas, Serkan. "Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi". (2021), 1875-1892. https://doi.org/10.17341/gazimmfd.815361
APA MUTLU N, Altuntas S (2021). Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4), 1875 - 1892. 10.17341/gazimmfd.815361
Chicago MUTLU Nazlı Gulum,Altuntas Serkan Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no.4 (2021): 1875 - 1892. 10.17341/gazimmfd.815361
MLA MUTLU Nazlı Gulum,Altuntas Serkan Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.36, no.4, 2021, ss.1875 - 1892. 10.17341/gazimmfd.815361
AMA MUTLU N,Altuntas S Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(4): 1875 - 1892. 10.17341/gazimmfd.815361
Vancouver MUTLU N,Altuntas S Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(4): 1875 - 1892. 10.17341/gazimmfd.815361
IEEE MUTLU N,Altuntas S "Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36, ss.1875 - 1892, 2021. 10.17341/gazimmfd.815361
ISNAD MUTLU, Nazlı Gulum - Altuntas, Serkan. "Teknolojik değişimlerin patent verilerine dayalı istatistiksel kontrol grafikleri ile izlenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/4 (2021), 1875-1892. https://doi.org/10.17341/gazimmfd.815361