Yıl: 2021 Cilt: 17 Sayı: 3 Sayfa Aralığı: 253 - 260 Metin Dili: İngilizce DOI: 10.18466/cbayarfbe.781368 İndeks Tarihi: 29-07-2022

Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications

Öz:
Internet of things and Drones are two new promising innovative technologies which is inevitable in the internet era. These technologies provide modern solutions for many fields. One of these fields is agriculture. Agriculture plays pivot role for humankind, because more than half of the World’s population depends on agriculture. In this study internet of things technology is applied to a drone which is capable for doing agricultural works like spraying, carrying and real time monitoring. An on board android device which is mount on the drone is used to manage the drone over internet by a graphical user interface software designed within the study. The farmer communicates with on board android device over internet by remote desktop application in order to manage drone and get data. The drone will help farmers by getting live data from the farm and do necessary works remotely. The aim of this study is to enable farmers to do remote farming. Agricultural activities have declined in recent years with the increase in migration from the village to the city. Thus, farmers will be able to make remote farming.
Anahtar Kelime: IOT Remote Farming UAV Smart Farming Precise Farming

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
2
2
2
  • 1. S. K. Mohapatra, J. N. Bhuyan, P. Asundi, and A. Singh, 2016.“A Solution Framework For Managıng Internet Of Things (Iot),” The International Journal of Computer Networks & Communications.; 8(6):73-87 doi: 10.5121/ijcnc.2016.8606.
  • 2. “World Employment and Social Outlook: Which sector will create the most jobs?” https://www.ilo.org/global/about-the- ilo/multimedia/maps-and-charts/WCMS_337082/lang-- en/index.htm (accessed Jul. 22, 2020).
  • 3. R. Vidhya and K. Valarmathi, 2018.“Survey on Automatic Monitoring of Hydroponics Farms Using IoT,” in Proceedings of the 3rd International Conference on Communication and Electronics Systems ICCES 2018; 2018: 125-128.doi: 10.1109/CESYS.2018.8724103.
  • 4. B. Basnet and J. Bang, 2018.“The State-of-the-Art of Knowledge-Intensive Agriculture: A Review on Applied Sensing Systems and Data Analytics,” Journal of Sensors; 2018: 1-13. doi: 10.1155/2018/3528296.
  • 5. K. W. Jaggard, A. Qi, and E. S. Ober, 2010.“Possible changes to arable crop yields by 2050,” Philosophical Transactions of the Royal Society B: Biological Sciences; 365(1554): 2835-2851. doi: 10.1098/rstb.2010.0153.
  • 6. S. Chakraborty and A. C. Newton, 2011.“Climate change, plant diseases and food security: An overview,” Plant Pathology; 60(1): 2-14. doi: 10.1111/j.1365- 3059.2010.02411.x.
  • 7. M. A. Jubair, S. Hossain, M. A. Al Masud, K. M. Hasan, S. H. S. Newaz, and M. S. Ahsan, 2018.“Design and development of an autonomous agricultural drone for sowing seeds,” IET Conference Publications; 2018 (CP750): 6-9. doi: 10.1049/cp.2018.1598.
  • 8. D. Gao, Q. Sun, B. Hu, and S. Zhang, 2020.“A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles,” Sensors (Switzerland); 20(5): 1487. doi: 10.3390/s20051487.
  • 9. M. V. Suhas, S. Tejas, S. Yaji, and S. Salvi, 2018.“AgrOne: An Agricultural Drone using Internet of Things, Data Analytics and Cloud Computing Features,” 2018 4th International Conference for Convergence in Technology. I2CT 2018; 2018: 1-6. doi: 10.1109/I2CT42659.2018.9057995.
  • 10. M. Romero, Y. Luo, B. Su, and S. Fuentes, “Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management,” Computers and Electronics in Agriculture.; 147: 109-117. doi: 10.1016/j.compag.2018.02.013.
  • 11. M. Reinecke and T. Prinsloo, 2017.“The influence of drone monitoring on crop health and harvest size,” 2017 1st International Conference on Next Geneation. Computing Appications NextComp 2017; 2017: 5-10. doi: 10.1109/NEXTCOMP.2017.8016168.
  • 12. L. G. Santesteban, S. F. Di Gennaro, A. Herrero-Langreo, C. Miranda, J. B. Royo, and A. Matese, 2017.“High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard,” Agricultural Water Management.;183:49-59, doi: 10.1016/j.agwat.2016.08.026.
  • 13. B. Allred, N. Eash, R. Freeland, L. Martinez, and D. B. Wishart, 2018.“Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study,” Agricultural Water Management..; 197:132–137, doi: 10.1016/j.agwat.2017.11.011.
  • 14. I. Wahab, O. Hall, and M. Jirström, 2018. “Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa,” Drones; 2(3): 28. doi: 10.3390/drones2030028.
  • 15. J. Huuskonen and T. Oksanen, 2018.“Soil sampling with drones and augmented reality in precision agriculture,” Computers and Electronics in Agriculture.; 154: 25-35. doi: 10.1016/j.compag.2018.08.039.
  • 16. S. Spoorthi, B. Shadaksharappa, S. Suraj, and V. K. Manasa, “Freyr drone: Pesticide/fertilizers spraying drone - An agricultural approach, 2017.” in Proceedings of the 2017 2nd International Conference on Computing and Communications Technologies, ICCCT 2017; 2017: 252- 255. doi: 10.1109/ICCCT2.2017.7972289.
  • 17. C. KOÇ, 2017.“Tarımda Pestisit Uygulama Amacıyla Ekonomik Bir Drone Tasarımı ve İmalatı,” Journal of. Agricultural Faculty Gaziosmanpasa Univ.; 34(2017-1): 94- 103. doi: 10.13002/jafag4274.
  • 18. B. Dai, Y. He, F. Gu, L. Yang, J. Han, and W. Xu, “A vision-based autonomous aerial spray system for precision agriculture, 2017.” in 2017 IEEE International Conference on Robotics and Biomimetics; 2018:1–7, doi: 10.1109/ROBIO.2017.8324467
  • 19. “Shane Colton: Fun with the Complementary Filter / MultiWii.” http://scolton.blogspot.com/2012/09/fun-with- complementary-filter-multiwii.html (accessed Aug. 15, 2020).
  • 20. “Remote control – 2: Sample your remote | Jumping Jack Flashweblog.” https://jumpjack.wordpress.com/2008/05/22/remote-control- 2/ (accessed Aug. 16, 2020
APA ALTIN C, ulutaş h, ORHAN E, ER O, Akdogan V (2021). Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. , 253 - 260. 10.18466/cbayarfbe.781368
Chicago ALTIN Cemil,ulutaş hasan,ORHAN Eyyüp,ER Orhan,Akdogan Volkan Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. (2021): 253 - 260. 10.18466/cbayarfbe.781368
MLA ALTIN Cemil,ulutaş hasan,ORHAN Eyyüp,ER Orhan,Akdogan Volkan Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. , 2021, ss.253 - 260. 10.18466/cbayarfbe.781368
AMA ALTIN C,ulutaş h,ORHAN E,ER O,Akdogan V Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. . 2021; 253 - 260. 10.18466/cbayarfbe.781368
Vancouver ALTIN C,ulutaş h,ORHAN E,ER O,Akdogan V Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. . 2021; 253 - 260. 10.18466/cbayarfbe.781368
IEEE ALTIN C,ulutaş h,ORHAN E,ER O,Akdogan V "Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications." , ss.253 - 260, 2021. 10.18466/cbayarfbe.781368
ISNAD ALTIN, Cemil vd. "Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications". (2021), 253-260. https://doi.org/10.18466/cbayarfbe.781368
APA ALTIN C, ulutaş h, ORHAN E, ER O, Akdogan V (2021). Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(3), 253 - 260. 10.18466/cbayarfbe.781368
Chicago ALTIN Cemil,ulutaş hasan,ORHAN Eyyüp,ER Orhan,Akdogan Volkan Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no.3 (2021): 253 - 260. 10.18466/cbayarfbe.781368
MLA ALTIN Cemil,ulutaş hasan,ORHAN Eyyüp,ER Orhan,Akdogan Volkan Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol.17, no.3, 2021, ss.253 - 260. 10.18466/cbayarfbe.781368
AMA ALTIN C,ulutaş h,ORHAN E,ER O,Akdogan V Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2021; 17(3): 253 - 260. 10.18466/cbayarfbe.781368
Vancouver ALTIN C,ulutaş h,ORHAN E,ER O,Akdogan V Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2021; 17(3): 253 - 260. 10.18466/cbayarfbe.781368
IEEE ALTIN C,ulutaş h,ORHAN E,ER O,Akdogan V "Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications." Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17, ss.253 - 260, 2021. 10.18466/cbayarfbe.781368
ISNAD ALTIN, Cemil vd. "Internet of Things Technology Based Agricultural Spraying Drone Design for Remote Farming Applications". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/3 (2021), 253-260. https://doi.org/10.18466/cbayarfbe.781368