Yıl: 2021 Cilt: 22 Sayı: 2 Sayfa Aralığı: 245 - 253 Metin Dili: İngilizce DOI: 10.23902/trkjnat.960073 İndeks Tarihi: 29-07-2022

EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES

Öz:
The possible side effects of drugs used in type II diabetes are increasing the tendency to herbal resources that have been used for many years. Senecio vernalis Waldst. & Kit is one of the annual Senecio L. species widely distributed in Turkey and used as a food and folk medicine. In this study, optimization of extraction conditions on the bioactive properties (Total phenolic content (TPC) and antioxidant capacity) of the flowers of S. vernalis and the potential of the plant for α-amylase, α-glucosidase, and lipase inhibitory activity were investigated. The optimum extraction conditions were determined at 69.72% water concentration, 59℃ for 26.15 min, and the highest experimental values of TPC and 2, 2‐diphenyl‐1‐picryl‐hydrazyl‐hydrate (DPPH) scavenging activity were observed as 28.14 mg gallic acid equivalent (GAE) g-1 and 3165.99 mg trolox equivalent (TE)/100 g sample, respectively. Significant inhibition was observed for α-amylase and α-glucosidase which are the key enzymes in type II diabetes, at a concentration of 100 mg mL-1, with 21.32% and 64.16% respectively. The S. vernalis extracts showed no detectable inhibition of lipase. The results showed that S. vernalis, which has high antioxidant capacity also has a significant anti-diabetic effect. It can be concluded that S. vernalis can be considered a natural resource in many industries such as food and pharmaceuticals. 
Anahtar Kelime: Extraction optimization Type II diabetes Antioxidant activity Senecio vernalis

-

Öz:
Tip II diyabette kullanılan ilaçların olası yan etkileri, uzun yıllardır kullanılan bitkisel kaynaklara olan eğilimi arttırmaktadır. Senecio vernalis Waldst. & Kit, Türkiye'de yaygın olarak bulunan, gıda ve halk ilacı olarak kullanılan tek yıllık Senecio L. türlerinden biridir. Bu nedenle, bu çalışmada, S. vernalis çiçeklerinin biyoaktif özellikleri (Toplam fenolik madde miktarı (TPC) ve antioksidan kapasite) ve α-amilaz, α-glukozidaz ve lipaz inhibitör aktivite potansiyeli üzerinde optimizasyon ekstraksiyon koşulları araştırıldı. Optimum ekstraksiyon koşulları %69.72 su konsantrasyonunda, 59℃'de 26.15 dakika olarak belirlenmiş ve TPC ve 2, 2‐diphenyl‐1‐picryl‐hydrazyl‐hydrate (DPPH) süpürme aktivitesinin en yüksek deneysel değerleri sırasıyla 28,14 mg gallik asit eşdeğeri (GAE) g-1 ve 3165.99 mg troloks eşdeğeri (TE)/100 g numune olarak belirlenmiştir. Tip II diyabette anahtar enzim olan α-amilaz, α-glukozidaz için 100 mg mL-1 konsantrasyonunda sırasıyla %21.32 ve %64.16 inhibisyon gözlemlendi. Senecio vernaris ekstraktı, saptanabilir bir lipaz inhibisyonu göstermedi. Sonuçlar, yüksek bir antioksidan kapasiteye sahip olan S. vernalis'in de önemli bir anti-diyabetik etkiye sahip olduğunu göstermiştir. Senecio vernalis'in gıda ve ilaç gibi birçok endüstride doğal bir kaynak olarak değerlendirilebileceği sonucuna varılabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Anonymous. 2000. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine, World Health Organization, Geneva, 79 pp.
  • 2. Ajiboye, B.O., Ojo, O.A., Okesola, M.A., Akinyemi, A.J., Talabi, J.Y., Idowu, O.T., Fadaka, A.O., Boligon, A.A. & Anraku de Campos, M.M. 2018. In vitro antioxidant activities and inhibitory effects of phenolic extract of Senecio biafrae (Oliv and Hiern) against key enzymes linked with type II diabetes mellitus and Alzheimer's disease. Food Science & Nutrition, 6(7): 1803-1810.
  • 3. Ali, H., Houghton, P. & Soumyanath, A. 2006. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107(3): 449-455.
  • 4. Alpaydin, E. 2020. Introduction to Machine Learning. MIT Press, Massachusetts, 712 pp.
  • 5. Anklam, E., Berg, H., Mathiasson, L., Sharman, M. & Ulberth, F. 1998. Supercritical fluid extraction (SFE) in food analysis: a review. Food Additives & Contaminants, 15(6): 729-750.
  • 6. Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. & Koirala, N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96.
  • 7. Ayoola, M., Adebajo, A., Zotor, F. & Pinkoane, M. 2019. Justifying antidiabetic ethnomedicinal claim of Senecio biafrae through its antihyperglycemic and anti-oxidant activities. Annals of Complementary and Alternative Medicine, 1(2): 1006.
  • 8. Azmir, J., Zaidul, I.S.M., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N. & Omar, A. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4): 426-436.
  • 9. Balpinar, N. & Okmen, G. 2019. Biological activities and chemical composition of Senecio vernalis growing in the lakes region of Turkey. International Journal of Environmental Science and Technology, 16(9): 5205-5212.
  • 10. Başyiğit, B., Alaşalvar, H., Doğan, N., Doğan, C., Berktaş, S. & Çam, M. 2020. Wild mustard (Sinapis arvensis) parts: compositional analysis, antioxidant capacity and determination of individual phenolic fractions by LC–ESI– MS/MS. Journal of Food Measurement and Characterization: 1-11.
  • 11. Baytop, T. 2007. Türkçe Bitkı Adları Sözlüğü. Türk Dil Kurumu Yayınları, Ankara, 512 pp.
  • 12. Bernhoft, A. 2010. A brief review on bioactive compounds in plants. Bioactive Compounds in Plants-Benefits and Risks for Man and Animals, 50: 11-17.
  • 13. Bhandari, M.R., Jong-Anurakkun, N., Hong, G. & Kawabata, J. 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry, 106(1): 247-252.
  • 14. Bhutkar, M. & Bhise, S. 2012. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. International Journal of Chemical Sciences, 10(1): 457-462.
  • 15. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. & Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1): 9-19.
  • 16. Brand-Williams, W., Cuvelier, M.E. & Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1): 25-30.
  • 17. Cam, M., Basyigit, B., Alasalvar, H., Yilmaztekin, M., Ahhmed, A., Sagdic, O., Konca, Y. & Telci, I. 2020. Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes. Food Bioscience, 35: 100577.
  • 18. Cariou, B., Charbonnel, B. & Staels, B. 2012. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends in Endocrinology & Metabolism, 23(5): 205-215.
  • 19. Chang, C.L., Lin, Y., Bartolome, A.P., Chen, Y.C., Chiu, S.C. & Yang, W.C. 2013. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. EvidenceBased Complementary and Alternative Medicine, 2013: 388657.
  • 20. Chew, K., Khoo, M., Ng, S., Thoo, Y.Y., Aida, W.W. & Ho, C.W. 2011. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. International Food Research Journal, 18(4): 1427.
  • 21. Christov, V., Mikhova, B., Alexandrova, R., Dimitrova, D., Nikolova, E. & Evstatieva, L. 2002. Alkaloids from the roots of Senecio macedonicus Griseb. Zeitschrift für Naturforschung C, 57(9-10): 780-784.
  • 22. Conforti, F., Loizzo, M.R., Statti, G.A., Houghton, P.J. & Menichini, F. 2006a. Biological properties of different extracts of two Senecio species. International Journal of Food Sciences and Nutrition, 57(1-2): 1-8.
  • 23. Conforti, F., Marrelli, M., Statti, G. & Menichini, F. 2006b. Antioxidant and cytotoxic activities of methanolic extract and fractions from Senecio gibbosus subsp. gibbosus (GUSS) DC. Natural Product Research, 20(9): 805-812.
  • 24. Dash, R.P., Babu, R.J. & Srinivas, N.R. 2018. Reappraisal and perspectives of clinical drug–drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica, 48(1): 89-108.
  • 25. DeFronzo, R.A. 1999. Pharmacologic therapy for type 2 diabetes mellitus. Annals of Internal Medicine, 131(4): 281-303.
  • 26. Dent, M., Dragović-Uzelac, V., Penić, M., Bosiljkov, T. & Levaj, B. 2013. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology, 51(1): 84-91.
  • 27. Doğan, N., Doğan, C. & Atila, F. 2021. Parts from lifecycle of H. erinaceus: response surface methodology approach to optimize extraction conditions and determination of its antioxidant, antidiabetic and antimicrobial effect. Journal of Microbiology, Biotechnology and Food Sciences, e3703.
  • 28. Faller, A. & Fialho, E. 2009. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International, 42(1): 210-215.
  • 29. Faraone, I., Rai, D.K., Chiummiento, L., Fernandez, E., Choudhary, A., Prinzo, F. & Milella, L. 2018. Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules, 23(10): 2497.
  • 30. Gilham, D. & Lehner, R. 2005. Techniques to measure lipase and esterase activity in vitro. Methods, 36(2): 139-147.
  • 31. Hastie, T., Tibshirani, R. & Friedman, J. 2001. The elements of statistical learning. Springer series in statistics, Springer, New York, 764 pp.
  • 32. Hung, H.Y., Qian, K., Morris-Natschke, S.L., Hsu, C.S. & Lee, K.H. 2012. Recent discovery of plant-derived antidiabetic natural products. Natural Product Reports, 29(5): 580-606.
  • 33. Hung, W.C., Ling, X.H., Chang, C.C., Hsu, H.F., Wang, S.W., Lee, Y.C., Luo, C., Lee, Y.T. & Houng, J.Y. 2017. Inhibitory effects of Siegesbeckia orientalis extracts on advanced glycation end product formation and key enzymes related to metabolic syndrome. Molecules, 22(10): 1785.
  • 34. Kim, Y.M., Wang, M.H. & Rhee, H.I. 2004. A novel αglucosidase inhibitor from pine bark. Carbohydrate Research, 339(3): 715-717.
  • 35. Kiprono, P.C., Kaberia, F., Keriko, J.M. & Karanja, J.N. 2000. The in vitro anti-fungal and anti-bacterial activities of β-sitosterol from Senecio lyratus (Asteraceae). Zeitschrift für Naturforschung C, 55(5-6): 485-488.
  • 36. Krentz, A.J. & Bailey, C.J. 2005. Oral antidiabetic agents. Drugs, 65(3): 385-411.
  • 37. Lee, S.K., Hwang, J.Y., Song, J.H., Jo, J.R., Kim, M.J., Kim, M.E. & Kim, J.I. 2007. Inhibitory activity of Euonymus alatus against alpha-glucosidase in vitro and in vivo. Nutrition Research and Practice, 1(3): 184.
  • 38. Loizzo, M., Tundis, R., Statti, G., Miljkovic-Brake, A., Menichini, F. & Houghton, P. 2006. Bioactive extracts from Senecio samnitum Huet. Natural Product Research, 20(3): 265-269.
  • 39. Lone, S.H., Bhat, K.A., Bhat, H.M., Majeed, R., Anand, R., Hamid, A. & Khuroo, M.A. 2014. Essential oil composition of Senecio graciliflorus DC: Comparative analysis of different parts and evaluation of antioxidant and cytotoxic activities. Phytomedicine, 21(6): 919-925.
  • 40. Ma, L., Lin, Q., Lei, D., Liu, S., Wang, X. & Zhao, Y. 2018. Alpha-glucosidase inhibitory activities of essential oils extracted from three chinese herbal medicines. Chemical Engineering Transactions, 64: 61-66.
  • 41. Mai, T.T., Thu, N.N., Tien, P.G. & Van Chuyen, N. 2007. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. Journal of Nutritional Science and Vitaminology, 53(3): 267-276.
  • 42. Markom, M., Hasan, M., Daud, W.R.W., Singh, H. & Jahim, J.M. 2007. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Separation and Purification Technology, 52(3): 487-496.
  • 43. Matsui, T., Yoshimoto, C., Osajima, K., Oki, T. & Osajima, Y. 1996. In vitro survey of α-glucosidase inhibitory food components. Bioscience, Biotechnology, and Biochemistry, 60(12): 2019-2022.
  • 44. McDougall, G.J., Dobson, P., Smith, P., Blake, A. & Stewart, D. 2005a. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. Journal of Agricultural and Food Chemistry, 53(15): 5896- 5904.
  • 45. McDougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A. & Stewart, D. 2005b. Different polyphenolic components of soft fruits inhibit α-amylase and αglucosidase. Journal of Agricultural and Food Chemistry, 53(7): 2760-2766.
  • 46. Memişoğulları, R. 2005. Diyabette serbest radikallerin rolü ve antioksidanların etkisi. Düzce Tıp Fakültesi Dergisi, 7(3): 30-39.
  • 47. Mogoşanu, G., Pintea, A., Bejenaru, L.E., Bejenaru, C., Rau, G. & Popescu, H. 2009. HPLC analysis of carotenoids from Senecio vernalis and S. jacobaea (Asteraceae). Farmacia, 57(6): 780-786.
  • 48. Mosihuzzaman, M. & Choudhary, M.I. 2008. Protocols on safety, efficacy, standardization, and documentation of herbal medicine (IUPAC Technical Report). Pure and Applied Chemistry, 80(10): 2195-2230.
  • 49. Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. 2016. Response Surface Methodology: process and product optimization using designed experiments. John Wiley & Sons, New York, 704 pp.
  • 50. Myers, R.H., Montgomery, D.C., Vining, G.G., Borror, C.M. & Kowalski, S.M. 2004. Response surface methodology: a retrospective and literature survey. Journal of Quality Technology, 36(1): 53-77.
  • 51. Pereira, C.G., Barreira, L., da Rosa Neng, N., Nogueira, J.M.F., Marques, C., Santos, T.F., Varela, J. & Custódio, L. 2017. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food and Chemical Toxicology, 107(1): 581-589.
  • 52. Porter, Y. 2012. Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions. Bioscience Horizons: The International Journal of Student Research, 5:hzs004.
  • 53. Robertson, R.P. 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 279(41): 42351-42354.
  • 54. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. & Latha, L.Y. 2011. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1): 1-10.
  • 55. Sharma, P. & Shah, G. 2015. Composition and antioxidant activity of Senecio nudicaulis Wall. ex DC.(Asteraceae): a medicinal plant growing wild in Himachal Pradesh, India. Natural Product Research, 29(9): 883-886.
  • 56. Singleton, V.L., Orthofer, R. & Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299(1): 152-178.
  • 57. Su, C.H., Lai, M.N. & Ng, L.T. 2013. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase– enzymes related to hyperglycemia. Food & Function, 4(4): 644-649.
  • 58. Suparmi, S. & Prasetya, H. 2012. Antioxidant activity of the crude carotenoid pigment extract from yellow ambon banana (M. parasidiaca sapientum) peel: its potency as vitamin a supplement. Sains Medika: Jurnal Kedokteran dan Kesehatan, 4(1): 78-88.
  • 59. Tang, C., Koulajian, K., Schuiki, I., Zhang, L., Desai, T., Ivovic, A., Wang, P., Robson-Doucette, C., Wheeler, M. & Minassian, B. 2012. Glucose-induced beta cell dysfunction in vivo in rats: link between oxidative stress and endoplasmic reticulum stress. Diabetologia, 55(5): 1366-1379.
  • 60. Tundis, R., Menichini, F., Loizzo, M.R., Bonesi, M., Solimene, U. & Menichini, F. 2012. Studies on the potential antioxidant properties of Senecio stabianus Lacaita (Asteraceae) and its inhibitory activity against carbohydrate-hydrolysing enzymes. Natural Product Research, 26(5): 393-404.
  • 61. Uğur, A., Ertem, H. & Beyatlι, Y. 2006. Antibacterial properties of Senecio sandrasicus. on multidrug-resistant Stenotrophomonas maltophilia. Pharmaceutical Biology, 44(4): 253-257.
  • 62. Wang, H., Du, Y.J. & Song, H.C. 2010. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chemistry, 123(1): 6-13.
  • 63. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5): 1047-1053.
APA doğan n, doğan c (2021). EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. , 245 - 253. 10.23902/trkjnat.960073
Chicago doğan nurcan,doğan cemhan EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. (2021): 245 - 253. 10.23902/trkjnat.960073
MLA doğan nurcan,doğan cemhan EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. , 2021, ss.245 - 253. 10.23902/trkjnat.960073
AMA doğan n,doğan c EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. . 2021; 245 - 253. 10.23902/trkjnat.960073
Vancouver doğan n,doğan c EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. . 2021; 245 - 253. 10.23902/trkjnat.960073
IEEE doğan n,doğan c "EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES." , ss.245 - 253, 2021. 10.23902/trkjnat.960073
ISNAD doğan, nurcan - doğan, cemhan. "EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES". (2021), 245-253. https://doi.org/10.23902/trkjnat.960073
APA doğan n, doğan c (2021). EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. Trakya University Journal of Natural Sciences, 22(2), 245 - 253. 10.23902/trkjnat.960073
Chicago doğan nurcan,doğan cemhan EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. Trakya University Journal of Natural Sciences 22, no.2 (2021): 245 - 253. 10.23902/trkjnat.960073
MLA doğan nurcan,doğan cemhan EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. Trakya University Journal of Natural Sciences, vol.22, no.2, 2021, ss.245 - 253. 10.23902/trkjnat.960073
AMA doğan n,doğan c EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. Trakya University Journal of Natural Sciences. 2021; 22(2): 245 - 253. 10.23902/trkjnat.960073
Vancouver doğan n,doğan c EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES. Trakya University Journal of Natural Sciences. 2021; 22(2): 245 - 253. 10.23902/trkjnat.960073
IEEE doğan n,doğan c "EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES." Trakya University Journal of Natural Sciences, 22, ss.245 - 253, 2021. 10.23902/trkjnat.960073
ISNAD doğan, nurcan - doğan, cemhan. "EXTRACTION OPTIMIZATION OF Senecio vernalis Waldst. & Kit AND DETERMINATION OF ANTI-α-AMYLASE/α-GLUCOSIDASE, ANTI-LIPASE AND ANTIOXIDANT ACTIVITIES". Trakya University Journal of Natural Sciences 22/2 (2021), 245-253. https://doi.org/10.23902/trkjnat.960073