#### On square Tribonacci Lucas numbers

Yıl: 2021 Cilt: 50 Sayı: 6 Sayfa Aralığı: 1652 - 1657 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

On square Tribonacci Lucas numbers

Öz:
The Tribonacci-Lucas sequence ${S_n}$ is defined by the recurrence relation $S_{n+3}=S_{n+2}+S_{n+1}+{S_n}{S_n}with {S_0} = 3, {S_1} = 1, {S_2} = 3.$ In this note, we show that 1 is the only perfect square in Tribonacci-Lucas sequence for n ̸≡ 1 (mod 32) and n ̸≡ 17 (mod 96).
Anahtar Kelime: squares Tribonacci Lucas sequence Tribonacci sequence

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
• [1] B. U. Alfred, On square Lucas numbers, Fibonacci Quart. 2 (1), 11-12, 1964.
• [2] J. E. Cohn, Square fibonacci numbers, Fibonacci Quart. 2 (2), 109-113, 1964.
• [3] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their sums, Miskolc Math. Notes 14 (1), 125-133, 2013.
• [4] A. Pethő, Perfect powers in second order recurrences, Topics in Classical Number Theory, Akadémiai Kiadó, Budapest, 1217-1227, 1981.
• [5] A. Pethő, Fifteen problems in number theory, Acta Univ. Sapientiae Math. 2 (1), 72-83, 2010.
• [6] N. Robbins, On Fibonacci numbers of the form $px^2$, where $p$ is prime, Fibonacci Quart. 21, 266-271, 1983.
• [7] N. Robbins, On Pell numbers of the form $Px^3$, where $P$ is prime, Fibonacci Quart. 22, 340-348, 1984.
• [8] O. Wylie, In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ the first, second and twelvth terms are squares, Amer. Math. Monthly 71, 220-222, 1964.
 APA IRMAK N (2021). On square Tribonacci Lucas numbers. , 1652 - 1657. 10.15672/hujms.651786 Chicago IRMAK Nurettin On square Tribonacci Lucas numbers. (2021): 1652 - 1657. 10.15672/hujms.651786 MLA IRMAK Nurettin On square Tribonacci Lucas numbers. , 2021, ss.1652 - 1657. 10.15672/hujms.651786 AMA IRMAK N On square Tribonacci Lucas numbers. . 2021; 1652 - 1657. 10.15672/hujms.651786 Vancouver IRMAK N On square Tribonacci Lucas numbers. . 2021; 1652 - 1657. 10.15672/hujms.651786 IEEE IRMAK N "On square Tribonacci Lucas numbers." , ss.1652 - 1657, 2021. 10.15672/hujms.651786 ISNAD IRMAK, Nurettin. "On square Tribonacci Lucas numbers". (2021), 1652-1657. https://doi.org/10.15672/hujms.651786
 APA IRMAK N (2021). On square Tribonacci Lucas numbers. Hacettepe Journal of Mathematics and Statistics, 50(6), 1652 - 1657. 10.15672/hujms.651786 Chicago IRMAK Nurettin On square Tribonacci Lucas numbers. Hacettepe Journal of Mathematics and Statistics 50, no.6 (2021): 1652 - 1657. 10.15672/hujms.651786 MLA IRMAK Nurettin On square Tribonacci Lucas numbers. Hacettepe Journal of Mathematics and Statistics, vol.50, no.6, 2021, ss.1652 - 1657. 10.15672/hujms.651786 AMA IRMAK N On square Tribonacci Lucas numbers. Hacettepe Journal of Mathematics and Statistics. 2021; 50(6): 1652 - 1657. 10.15672/hujms.651786 Vancouver IRMAK N On square Tribonacci Lucas numbers. Hacettepe Journal of Mathematics and Statistics. 2021; 50(6): 1652 - 1657. 10.15672/hujms.651786 IEEE IRMAK N "On square Tribonacci Lucas numbers." Hacettepe Journal of Mathematics and Statistics, 50, ss.1652 - 1657, 2021. 10.15672/hujms.651786 ISNAD IRMAK, Nurettin. "On square Tribonacci Lucas numbers". Hacettepe Journal of Mathematics and Statistics 50/6 (2021), 1652-1657. https://doi.org/10.15672/hujms.651786