Yıl: 2021 Cilt: 12 Sayı: 5 Sayfa Aralığı: 783 - 792 Metin Dili: İngilizce DOI: 10.24012/dumf.1051434 İndeks Tarihi: 29-07-2022

Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge

Öz:
This study investigated electrical strain gage technology, which is widely used in experimental stress measurement, on an application. Strain gages are used to precisely measure strain directly in a system. This method is carried out to verify the numerical and analytical calculations performed or to record the strain data generated during the active duty of a system and to investigate the fatigue damage. In particular, verifying numerical calculations in the strength-material recovery optimizations of mass-produced systems contributes to the development of the system. In this study, strain measurement using strain gage and strain measurement technology is presented on an application. Information was given about strain gages. A full bridge wheatstone bridge consisting of 4 linear gages was created on a prototype. The system was tested with a load cell validation. Structural finite element analysis of the prototype and analytical calculation of the fullbridge strain gage connection were performed. The results showed that the measurement with the strain gauge differed 1.20% and 1.40% from the analytical and numerical results, respectively. Thus, precision strain measurement technology was successfully presented in engineering systems.
Anahtar Kelime: Experimental stress analysis Wheatstone bridge circuit Data acquisition system Strain gages

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]K. Hoffmann, “An Introduction to Measurements using Strain Gages,” Hottinger Baldwin Messtechnik GmbH, p. 257, 1989.
  • [2]G. İrsel, “Strength-based design of a fertilizer spreader chassis using computer aided engineering and experimental validation,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2021, doi: 10.1177/0954406221993847.
  • [3]H. K. Çelik, N. Çaglayan, M. Topakci, A. E. W. Rennie, and I. Akinci, “Strength-based design analysis of a Para-Plow tillage tool,” Comput. Electron. Agric., vol. 169, no. December 2019, p. 105168, 2020, doi: 10.1016/j.compag.2019.105168.
  • [4]T. J. Lisle, B. A. Shaw, and R. C. Frazer, “Internal spur gear root bending stress: A comparison of ISO 6336:1996, ISO 6336:2006, VDI 2737:2005, AGMA, ANSYS finite element analysis and strain gauge techniques,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 5, pp. 1713–1720, 2019, doi: 10.1177/0954406218774364.
  • [5]G. İrsel, “Effects of modification on the strength–weight ratio of standard bevel gears,” Mech. Based Des. Struct. Mach., 2021, doi: 10.1080/15397734.2021.1960562.
  • [6]H. Moustabchir, Z. Azari, S. Hariri, and I. Dmytrakh, “Experimental and numerical study of stress-strain state of pressurised cylindrical shells with external defects,” Eng. Fail. Anal., vol. 17, no. 2, pp. 506–514, 2010, doi: 10.1016/j.engfailanal.2009.09.011.
  • [7]H. Yurdem, A. Degirmencioglu, E. Cakir, and E. Gulsoylu, “Measurement of strains induced on a three-bottom moldboard plough under load and comparisons with finite element simulations,” Meas. J. Int. Meas. Confed., vol. 136, pp. 594–602, 2019, doi: 10.1016/j.measurement.2019.01.011.
  • [8]H. K. Celik, A. E. W. Rennie, and I. Akinci, “Design and structural optimisation of a tractor mounted telescopic boom crane,” J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 909–924, 2017, doi: 10.1007/s40430-016-0558-y.
  • [9]H. Ma, J. Wang, G. Li, and J. Qiu, “Fatigue redesign of failed sub frame using stress measuring, FEA and British Standard 7608,” Eng. Fail. Anal., vol. 97, no. January, pp. 103–114, 2019, doi: 10.1016/j.engfailanal.2019.01.032.
  • [10]S. S. Patil, S. Karuppanan, I. Atanasovska, and A. A. Wahab, “Contact stress analysis of helical gear pairs, including frictional coefficients,” Int. J. Mech. Sci., vol. 85, pp. 205–211, 2014, doi: 10.1016/j.ijmecsci.2014.05.013.
  • [11]B. Gao, X. Chen, and G. Chen, “Ratchetting and ratchetting boundary study of pressurized straight low carbon steel pipe under reversed bending,” Int. J. Press. Vessel. Pip., vol. 83, no. 2, pp. 96–106, 2006, doi: 10.1016/j.ijpvp.2005.12.002.
  • [12]T. J. Lisle, B. A. Shaw, and R. C. Frazer, “External spur gear root bending stress: A comparison of ISO 6336:2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques,” Mech. Mach. Theory, vol. 111, pp. 1–9, 2017, doi: 10.1016/j.mechmachtheory.2017.01.006.
  • [13]R. A. B. Almeida, D. C. Vaz, A. P. V. Urgueira, and A. R. Janeiro Borges, “Using ring strain sensors to measure dynamic forces in wind-tunnel testing,” Sensors Actuators, A Phys., vol. 185, pp. 44–52, 2012, doi: 10.1016/j.sna.2012.07.024.
  • [14]Y. Lou, J. Wei, and S. Song, “Design and Optimization of a Joint Torque Sensor for Robot Collision Detection,” IEEE Sens. J., vol. 19, no. 16, pp. 6618–6627, 2019, doi: 10.1109/JSEN.2019.2912810.
  • [15]K. Papadopoulos, “Technique for Measurement of,” Wind ENERGY, vol. 3, no. May 1999, pp. 35–65, 2000.
  • [16]M. Bruner, M. Catena, D. Cortis, G. Malavasi, S. Rossi, and M. Testa, “Estimation of the wheel-rail lateral contact force through the analysis of the rail web bending strains,” Meas. J. Int. Meas. Confed., vol. 99, pp. 23–35, 2017, doi: 10.1016/j.measurement.2016.12.015.
  • [17]D. Corminboeuf, “Calibration of bridge standard for strain gauge bridge amplifier,” 17th Int. Congr. Metrol. CIM 2015, vol. 4, pp. 2–6, 2015, doi: 10.1051/metrology/20150004004.
  • [18]S. I. Gavrilenkov, S. S. Gavriushin, and V. A. Godzikovsky, “Multicriteria approach to design of strain gauge force transducers,” J. Phys. Conf. Ser., vol. 1379, no. 1, 2019, doi: 10.1088/1742-6596/1379/1/012010.
  • [19]S. Bošnjak, Z. Petković, N. Zrnić, G. Simić, and A. Simonović, “Cracks, repair and reconstruction of bucket wheel excavator slewing platform,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1631–1642, 2009, doi: 10.1016/j.engfailanal.2008.11.009.
  • [20]H. K. Y. T. K. Sasaki, “Four-Point Bending Test of Determining Stress-Strain Curves Asymmetric between Tension and Compression,” pp. 489–492, 2014, doi: 10.1007/s11340-013-9791-9.
  • [21]A. M. Abou-Rayan, N. N. Khalil, and A. A. Zaky, “Experimental investigation on the flexural behavior of steel cold-formed I-beam with strengthened hollow tubular flanges,” Thin-Walled Struct., vol. 155, no. July, p. 106971, 2020, doi: 10.1016/j.tws.2020.106971.
  • [22]J. Ye, I. Hajirasouliha, and J. Becque, “Experimental investigation of local-flexural interactive buckling of cold-formed steel channel columns,” Thin-Walled Struct., vol. 125, no. July 2017, pp. 245–258, 2018, doi: 10.1016/j.tws.2018.01.020.
  • [23]L. D. V. Anand, D. Hepsiba, S. Palaniappan, B. Sumathy, P. Vijayakumar, and S. S. Rani, “Automatic strain sensing measurement on steel beam using strain gauge,” Mater. Today Proc., vol. 45, pp. 2578–2580, 2021, doi: 10.1016/j.matpr.2020.11.274.
  • [24]V. Goga, “Finite Element Model of the Strain Gauge for Determining 1 Introduction 2 Principle of the Strain Gauge Measurement,” Trans. VŠB – Tech. Univ. Ostrava, Mech. Ser. No., vol. LIX, no. 2, pp. 67–73, 2013.
APA Irsel G (2021). Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. , 783 - 792. 10.24012/dumf.1051434
Chicago Irsel Gurkan Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. (2021): 783 - 792. 10.24012/dumf.1051434
MLA Irsel Gurkan Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. , 2021, ss.783 - 792. 10.24012/dumf.1051434
AMA Irsel G Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. . 2021; 783 - 792. 10.24012/dumf.1051434
Vancouver Irsel G Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. . 2021; 783 - 792. 10.24012/dumf.1051434
IEEE Irsel G "Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge." , ss.783 - 792, 2021. 10.24012/dumf.1051434
ISNAD Irsel, Gurkan. "Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge". (2021), 783-792. https://doi.org/10.24012/dumf.1051434
APA Irsel G (2021). Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(5), 783 - 792. 10.24012/dumf.1051434
Chicago Irsel Gurkan Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 12, no.5 (2021): 783 - 792. 10.24012/dumf.1051434
MLA Irsel Gurkan Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.12, no.5, 2021, ss.783 - 792. 10.24012/dumf.1051434
AMA Irsel G Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2021; 12(5): 783 - 792. 10.24012/dumf.1051434
Vancouver Irsel G Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2021; 12(5): 783 - 792. 10.24012/dumf.1051434
IEEE Irsel G "Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge." Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12, ss.783 - 792, 2021. 10.24012/dumf.1051434
ISNAD Irsel, Gurkan. "Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge". Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 12/5 (2021), 783-792. https://doi.org/10.24012/dumf.1051434