Yıl: 2021 Cilt: 5 Sayı: 3 Sayfa Aralığı: 692 - 708 Metin Dili: İngilizce DOI: 10.46519/ij3dptdi.956020 İndeks Tarihi: 29-07-2022

ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES

Öz:
Additive manufacturing (AM) technologies, also known as 3D printing, which offer advantages such as design flexibility, short lead time and cost effectiveness compared to traditional production methods, are used in many different areas. With the exponentially increasing technological developments, complex structures at micron level can be produced and used in customized applications. One promising unique application of AM is Lab-on-a-chips (LOCs). These microfluidic devices can effectively be used in laboratory experiments carried out on a very small scale in biomedical, chemistry and clinical cases. Lab-on-chip systems, which are time-consuming, specialization-required, and expensive to produce with traditional 2D microfabrication technologies such as lithography and PDMS-glass bonding, have become easily producible with AM methods. Although there are many different AM methods can be used in 3D printing of microfluidics, Multi Jet Printing (MJP) method is frequently preferred because of its high sensitivity and dimensional accuracy. MJP AM technology is based on spraying photopolymer resins to a layer thickness of down to 16 µm, then curing with UV light. This paper critically reviews relevant methods and materials used for 3D printing of microfluidics, especially for the MJP based technologies. A case study on 3d printing complex microchannels for microfluidics application using a commercial material jetting based 3D printer (Objet 30 Prime - Stratasys) has also been presented. The results show that the 3D printing of microfluidics is a promising area for often novel applications.
Anahtar Kelime: 3D Printing Additive Manufacturing Lab on a Chip Microfluidics

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ürkmez, B., “Lab on a Chip”, http://www.acikbilim.com/tag/lab-on-a-chip, May 4, 2021.
  • 2. Chow, A.W., “Lab‐on‐a‐chip: Opportunities for chemical engineering” AIChE Journal, Vol. 48 Issue 8, Pages 1590-1595, 2002.
  • 3. Gupta, K., Kim, D.H., Ellison, D., Smith, C., Kundu, A., Tuan, J. and Levchenko, A., “Lab-on-a-chip devices as an emerging platform for stem cell biology”, Lab on a Chip, Vol. 10, Issue 16, Pages 2019-2031, 2010.
  • 4. Li, G.P., Bachman, M. and Lee, A. U.S. Patent Application No. 10/763, 540, 2004.
  • 5. Chin, C.D., Linder, V.and Sia, S. K., “Lab-on-a-chip devices for global health: Past studies and future opportunities”, Lab on a Chip, Vol. 7, Issue 1, Pages 41-57, 2007.
  • 6. Ríos, Á., Zougagh, M. and Avila, M., “Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories A review”, Analytica Chimica Acta, Vol. 740, Pages 1-11, 2012.
  • 7. Britannica, The Editors of Encyclopaedia, "Membrane", https://www.britannica.com/science/membrane-biology. Accessed, May 4, 2021.
  • 8. Hansen, C.L., Skordalakes, E., Berger, J.M. and Quake, S.R., “A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion”, Proc. Natl. Acad. Sci. USA 99, Pages 16531–16536, 2002.
  • 9. Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D.E. Whitesides, G.M., “Subcellular positioning of small molecules”, Nature, Vol. 411, Issue 1016, 2001.
  • 10. Ren, K., Zhou, J. and Wu, H., “Materials for microfluidic chip fabrication. Accounts of chemical research”, Vol. 46, Issue 11, Pages 2396-2406, 2013.
  • 11. elveflow.com, “Materials for microfluidic device fabrication: a review”, May 4, 2021.
  • 12. Kemp, G., “Capillary electrophoresis”, https://en.wikipedia.org/wiki/Capillary_electrophoresis, May 4, 2021.
  • 13. Wu, W.I., Sask, K.N., Brash, J.L. and Selvaganapathy, P.R., “Polyurethane-based microfluidic devices for blood contacting applications”, Lab on a Chip, Vol. 12, Issue 5, Pages 960-970, 2012.
  • 14. Nge, P.N., Rogers, C.I. and Woolley, A. T., “Advances in microfluidic materials, functions, integration, and applications”, Chemical Reviews, Vol. 113, Issue 4, Pages 2550-2583, 2013.
  • 15. Grist, S.M., Oyunerdene, N., Flueckiger, J., Kim, J., Wong, P.C., Chrostowski, L. and Cheung, K. C., “Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications”, Analyst, Vol. 139, Issue 22, Pages 5718-5727, 2014.
  • 16. Ogończyk, D., Węgrzyn, J., Jankowski, P., Dąbrowski, B. and Garstecki, P., “Bonding of microfluidic devices fabricated in polycarbonate”, Lab on a Chip, Vol. 10, Issue 10, Pages 1324-1327, 2010.
  • 17. Bilenberg, B., Nielsen, T., Clausen, B. and Kristensen, A., “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics”, Journal of Micromechanics and Microengineering, Vol. 14, Issue 6, Page 814, 2004.
  • 18. Testouri, A., Ranft, M., Honorez, C., Kaabeche, N., Ferbitz, J., Freidank, D. and Drenckhan, W., “Generation of crystalline polyurethane foams using millifluidic Lab‐on‐a‐Chip technologies”, Advanced Engineering Materials, Vol. 15, Issue 11, Pages 1086-1098, 2013.
  • 19. Stern, S.A.,“Barrer”, https://en.wikipedia.org/wiki/Barrer, May 4, 2021.
  • 20. Gale, B.K., Jafek, A.R., Lambert, C.J., Goenner, B.L., Moghimifam, H., Nze, U. C. and Kamarapu, S. K. A, “Review of current methods in microfluidic device fabrication and future commercialization prospects”, Inventions, Vol. 3, Issue 3, Page 60, 2018.
  • 21. D Jadhav, A., Wei, L. and Shi, P., “Compartmentalized platforms for neuro-pharmacological research”, Current Neuropharmacology, Vol. 14, Issue 1, Pages 72-86, 2016.
  • 22. Taylor A.M., Blurton-Jones M., Rhee S.W., Cribbs D.H., Cotman C.W., Jeon N.L., “A microfluidic culture platform for CNS axonal injury, regeneration and transport”, Nat. Methods, Vol. 2, Issue 8, Pages 599–605, 2005.
  • 23. Heckele, M. and Schomburg, W.K., “Review on micro molding of thermoplastic polymers”, J. Micromech. Microeng, Vol. 14, 2004.
  • 24. Wu, J., Gu, M., “Microfluidic sensing: State of the art fabrication and detection techniques”, J. Biomed. Opt., Vol. 16, Issue 8, 2011.
  • 25. Chua, C.K., Leong, K.F., “3D Printing and Additive Manufacturing: Principles and Applications”, 5th ed., World Scientific, 2016.
  • 26. Sood, A.K., Ohdar, R.K. and Mahapatra, S.S., “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater Des., Vol. 31, Pages 287–295, 2010.
  • 27. Zhong, W., Li, F., Zhang, Z., Song, L. and Li, Z., “Short fiber reinforced composites for fused deposition modeling”, Mater Sci. Eng. A., Vol. 301, Pages 125–130, 2001.
  • 28. West, A.P., Sambu, S.P. and Rosen, D.W., “A process planning method for improving build performance in stereolithography”, Comput Aided Des, Vol. 33, Issue 1, Pages 65-79, 2001. 29. Dudek, P., “FDM 3D printing technology in manufacturing composite elements”, Arch Metall Mater, Vol. 58, Issue 4, Pages 1415-1418, 2013.
  • 30. Kruth, J.P., Wang, X., Laoui, T. and Froyen, L., “Lasers and materials in selective laser sintering”, Assem Autom, Vol. 23, Issue 4, Pages 357-371, 2003.
  • 31. Wagner, S. M. and Walton, R.O., “Additive manufacturing’s impact and future in the aviation industry”, Production Planning & Control, Vol. 27, Issue 13, Pages 1124-1130, 2016.
  • 32. Leal, R., Barreiros, F.M., Alves, L., Romeiro, F., Vasco, J.C., Santos, M., & Marto, C., “Additive manufacturing tooling for the automotive industry”, The International Journal of Advanced Manufacturing Technology, Vol. 92, Issues 5-8, Pages 1671-1676 2017.
  • 33. van Eijnatten, M., van Dijk, R., Dobbe, J., Streekstra, G., Koivisto, J. and Wolff, J., “CT image segmentation methods for bone used in medical additive manufacturing”, Medical Engineering & Physics, Vol. 51, Pages 6-16, 2018.
  • 34. Lim, S., Buswell, R. A., Le, T.T., Austin, S. A., Gibb, A. G. and Thorpe, T., “Developments in construction-scale additive manufacturing processes”, Automation in construction, Vol.21, Pages 262-268, 2012.
  • 35. Go, J. and Hart, A. J., “A framework for teaching the fundamentals of additive manufacturing and enabling rapid innovation”, Additive Manufacturing, Vol. 10, Pages 76-87, 2016.
  • 36. Gürcüm, B.H., Börklü, H.R., Sezer, K. and Eren, O., “Implementing 3D Printed Structures as the Newest Textile Form”, J. Fashion Technol. Textile Eng. Issue 4, Page 19, 2018.
  • 37. Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V. and Cronin, L., “Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices”, Lab on a Chip, Vol. 12, Issue 18, Pages 3267-3271. 2012.
  • 38. Lee, W., Kwon, D., Choi, W., Jung, G. Y., Au, A. K., Folch, A. and Jeon, S., “3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section”, Scientific Reports, Vol. 5, Issue 1, Pages 1-7, 2015.
  • 39. Chan, H. N., Chen, Y., Shu, Y., Chen, Y., Tian, Q. and Wu, H., “Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips”, Microfluidics and Nanofluidics, Vol. 19, Issue 1, Pages 9-18, 2015.
  • 40. O'Neill, P. F., Ben Azouz, A., Vazquez, M., Liu, J., Marczak, S., Slouka, Z. and Brabazon, D., “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications”, Biomicrofluidics, Vol. 8, Issue 5, 2014.
  • 41. Li, J., Rossignol, F. and Macdonald, J., “Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing”, Lab on a Chip, Vol. 15, Issue 12, Pages 2538-2558, 2015.
  • 42. Chossat, J. B., Tao, Y., Duchaine, V. and Park, Y. L., “Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing”, International conference on robotics and automation (ICRA), Pages 2568-2573, IEEE, 2015.
  • 43. Comina, G., Suska, A. and Filippini, D., "3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones”, In Microfluidics, BioMEMS, and Medical Microsystems XV, Vol. 10061, International Society for Optics and Photonics, 2017.
  • 44. Knowlton, S., Yu, C. H., Ersoy, F., Emadi, S., Khademhosseini, A. and Tasoglu, S., “3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs”, Biofabrication, Vol. 8, Issue 2, 2016.
  • 45. Johnson, B. N., Lancaster, K. Z., Hogue, I. B., Meng, F., Kong, Y. L., Enquist, L. W. and McAlpine, M. C., “3D printed nervous system on a chip”, Lab on a Chip, Vol. 16, Issue 8, Pages 1393-1400, 2016.
  • 46. Adamski, K., Kubicki, W., & Walczak, R., “3D printed electrophoretic lab-on-chip for DNA separation”, Procedia Engineering, Vol. 168, Pages 1454-1457, 2016.
  • 47. Zhu, F., Macdonald, N. P., Cooper, J. M., & Wlodkowic, D., “Additive manufacturing of lab-on-a-chip devices: promises and challenges”, International Society for Optics and Photonics, Vol. 8923, 2013.
  • 48. Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B. and Breadmore, M. C., “3D printed microfluidic devices: enablers and barriers”, Lab on a Chip, Vol. 16, Issue 11, Pages 1993-2013, 2016.
  • 49. Krujatz, F., Lode, A., Seidel, J., Bley, T., Gelinsky, M. and Steingroewer, J., “Additive Biotech Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology”, New Biotechnology, Vol. 39, Pages 222-231, 2017.
  • 50. Carve, M., & Wlodkowic, D., “3D-printed chips: Compatibility of additive manufacturing photopolymeric substrata with biological applications”, Micromachines, Vol. 9, Issue 2, Page 91, 2018.
  • 51. Zhu, F., Macdonald, N. P., Skommer, J. and Wlodkowic, D., “Biological implications of lab-on-a-chip devices fabricated using multi-jet modelling and stereolithography processes” In Bio-MEMS and Medical Microdevices II, Vol. 9518, 2015.
  • 52. Lifton, V. A., Lifton, G. and Simon, S., “Options for additive rapid prototyping methods (3D printing) in MEMS technology”, Rapid Prototyping Journal, 2014.
  • 53. Walczak, R. and Adamski, K., “Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips”, Journal of Micromechanics and Microengineering, Vol. 25, Issue 8, 2015.
  • 54. Lee, J. M., Zhang, M. and Yeong, W. Y., “Characterization and evaluation of 3D printed microfluidic chip for cell processing”, Microfluidics and Nanofluidics, Vol. 20, Issue 1, Page 5, 2016.
  • 55. Bauer, M. and Kulinsky, L., “Fabrication of a lab-on-chip device using material extrusion (3D printing) and demonstration via Malaria-Ab ELISA”, Micromachines, Vol. 9, Issue 1, Page 27, 2018.
  • 56. Lantada, A. D., de Blas Romero, A., Schwentenwein, M., Jellinek, C., Homa, J. and García-Ruíz, J. P., “Monolithic 3D labs-and organs-on-chips obtained by lithography-based ceramic manufacture”, The International Journal of Advanced Manufacturing Technology, Vol. 93, Issues 9-12, Pages 3371-3381, 2017.
  • 57. Comina, G., Suska, A. and Filippini, D., “Low cost lab-on-a-chip prototyping with a consumer grade 3D printer”, Lab on a Chip, Vol. 14, Issue 16, Pages 2978-2982, 2014.
  • 58. Sima, F., Sugioka, K., Vázquez, R. M., Osellame, R., Kelemen, L. and Ormos, P., “Three-dimensional femtosecond laser processing for lab-on-a-chip applications”, Nanophotonics, Vol. 7, Issue 3, Pages 613-634, 2018.
  • 59. Cesewski, E., Haring, A. P., Tong, Y., Singh, M., Thakur, R., Laheri, S. and Johnson, B. N., “Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications”, Lab on a Chip, Vol. 18, Issue 14, Pages 2087-2098, 2018.
  • 60. Pabst, O., Perelaer, J., Beckert, E., Schubert, U. S., Eberhardt, R. and Tünnermann, A., “All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems”, Organic Electronics, Vol. 14, Issue 12, Pages 3423-3429, 2013.
  • 61. Sochol, R. D., Sweet, E., Glick, C. C., Venkatesh, S., Avetisyan, A., Ekman, K. F. and Hanson, K., “3D printed microfluidic circuitry via multijet-based additive manufacturing”, Lab on a Chip, Vol. 16, Issue 4, Pages 668-678, 2016.
  • 62. Su, W., Cook, B. S., Fang, Y. and Tentzeris, M. M., “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications”, Scientific Reports, Vol. 6, 2016.
  • 63. Takenaga, S., Schneider, B., Erbay, E., Biselli, M., Schnitzler, T., Schöning, M. J. and Wagner, T., “Fabrication of biocompatible lab‐on‐chip devices for biomedical applications by means of a 3D‐printing process”, Physica Status, Vol. 212, Issue 6, Pages 1347-1352, 2015.
  • 64. Femmer, T., Flack, I. and Wessling, M., “Additive manufacturing in fluid process engineering”, Chemie Ingenieur Techn., Vol. 88, Issue 5, Pages 535-552, 2016.
  • 65. Yazdi, A. A., Popma, A., Wong, W., Nguyen, T., Pan, Y. and Xu, J., “3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications”, Microfluidics and Nanofluidics, Vol. 20, Issue 3, Page 50, 2016.
  • 66. Pranzo, D., Larizza, P., Filippini, D. and Percoco, G., “Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: A topical review”, Micromachines, Vol. 9, Issue 8, Page 374, 2018.
  • 67. Bhattacharjee, N., Urrios, A., Kang, S. and Folch, A., “The upcoming 3D-printing revolution in microfluidics”, Lab on a Chip, Vol. 16, Issue 10, Pages 1720-1742, 2016.
  • 68. Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S. and Tasoglu, S., “3D-printed microfluidic devices”, Biofabrication, Vol. 8, Issue 2, 2016.
  • 69. Temiz, Y., Lovchik, R. D., Kaigala, G. V. and Delamarche, E., “Lab-on-a-chip devices: How to close and plug the lab?”, Microelectronic Engineering, Vol. 132, Pages 156-175, 2015.
  • 70. Shallan, A. I., Smejkal, P., Corban, M., Guijt, R. M., & Breadmore, M. C., “Cost-effective three-dimensional printing of visibly transparent microchips within minutes”, Analytical Chemistry, Vol. 86, Issue 6, Pages 3124-3130, 2014.
  • 71. Lee, K. G., Park, K. J., Seok, S., Shin, S., Park, J. Y., Heo, Y. S. and Lee, T. J., “3D printed modules for integrated microfluidic devices”, Rsc Advances, Vol. 4, Issue 62, Pages 32876-32880, 2014.
  • 72. Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J., Bowman, R. W. and Cronin, L., “Integrated 3D-printed reactionware for chemical synthesis and analysis”, Nature Chemistry, Vol. 4, Issue 5, Pages 349-354, 2012.
  • 73. Au, A. K., Bhattacharjee, N., Horowitz, L. F., Chang, T. C. and Folch, A., “3D-printed microfluidic automation”, Lab on a Chip, Vol. 15, Issue 8, Pages 1934-1941, 2015.
  • 74. Waldbaur, A., Rapp, H., Länge, K., & Rspp, B. E., “Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes”, Analytical Methods, Vol. 3, Issue 12, 2011.
  • 75. Tamayol, A., Bahrami, M., “Microchannels with noncircular cross section”, Fluids Engineering, Vol. 132, Issue 11, 2010.
  • 76. Guo, X., Zhou, J., Zhang, W., Du, Z., Liu, C., Liu, Y., “Self-supporting structure design in additive manufacturing through explicit topology optimization”, Computer Methods in Applied Mechanics and Engineering, Vol. 323, Pages 27-63, 2017.
APA EREN O, CUHADAROGLU M, sezer H (2021). ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. , 692 - 708. 10.46519/ij3dptdi.956020
Chicago EREN Ogulcan,CUHADAROGLU Merve Begum,sezer Huseyin Kursad ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. (2021): 692 - 708. 10.46519/ij3dptdi.956020
MLA EREN Ogulcan,CUHADAROGLU Merve Begum,sezer Huseyin Kursad ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. , 2021, ss.692 - 708. 10.46519/ij3dptdi.956020
AMA EREN O,CUHADAROGLU M,sezer H ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. . 2021; 692 - 708. 10.46519/ij3dptdi.956020
Vancouver EREN O,CUHADAROGLU M,sezer H ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. . 2021; 692 - 708. 10.46519/ij3dptdi.956020
IEEE EREN O,CUHADAROGLU M,sezer H "ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES." , ss.692 - 708, 2021. 10.46519/ij3dptdi.956020
ISNAD EREN, Ogulcan vd. "ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES". (2021), 692-708. https://doi.org/10.46519/ij3dptdi.956020
APA EREN O, CUHADAROGLU M, sezer H (2021). ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 692 - 708. 10.46519/ij3dptdi.956020
Chicago EREN Ogulcan,CUHADAROGLU Merve Begum,sezer Huseyin Kursad ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. International Journal of 3D Printing Technologies and Digital Industry 5, no.3 (2021): 692 - 708. 10.46519/ij3dptdi.956020
MLA EREN Ogulcan,CUHADAROGLU Merve Begum,sezer Huseyin Kursad ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. International Journal of 3D Printing Technologies and Digital Industry, vol.5, no.3, 2021, ss.692 - 708. 10.46519/ij3dptdi.956020
AMA EREN O,CUHADAROGLU M,sezer H ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. International Journal of 3D Printing Technologies and Digital Industry. 2021; 5(3): 692 - 708. 10.46519/ij3dptdi.956020
Vancouver EREN O,CUHADAROGLU M,sezer H ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES. International Journal of 3D Printing Technologies and Digital Industry. 2021; 5(3): 692 - 708. 10.46519/ij3dptdi.956020
IEEE EREN O,CUHADAROGLU M,sezer H "ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES." International Journal of 3D Printing Technologies and Digital Industry, 5, ss.692 - 708, 2021. 10.46519/ij3dptdi.956020
ISNAD EREN, Ogulcan vd. "ADDITIVE MANUFACTURING OF MICROFLUIDIC LAB-ON-A-CHIP DEVICES". International Journal of 3D Printing Technologies and Digital Industry 5/3 (2021), 692-708. https://doi.org/10.46519/ij3dptdi.956020