Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes

Yıl: 2021 Cilt: 10 Sayı: 2 Sayfa Aralığı: 275 - 282 Metin Dili: İngilizce DOI: 10.46810/tdfd.998059 İndeks Tarihi: 29-07-2022

Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes

Öz:
We investigated the effects of melatonin, cetuximab and cisplatin treatments alone or in combination on PANC-1 cells from a human pancreatic carcinoma of ductal cell origin through cell viability and gene expressions. The cells were left for 48 h incubation after applying chemicals on the PANC-1 cells. The metabolic effects of the substances on cell viability at the end of incubation were measured by MTT assay. The gene expressions of p21, p27, p53, p57, MDM2 and KRAS were determined by RT-PCR. The use of melatonin combined with cisplatin or cetuximab increased p21 and p57 genes and decreased KRAS gene. Furthermore, melatonin combined with cetuximab increased p27 gene expression and decreased the cell viability compared to cetuximab alone. The cell viability was the lowest in cisplatin and cisplatin plus melatonin and/or cetuximab groups. The p53 were highest in the cisplatin groups while cisplatin plus melatonin decreased the p53 gene and its autoregulator MDM2 gene compared to cisplatin alone. In conclusion, melatonin in combinations with cisplatin and cetuximab enhances the tumor suppressor genes p21, p27 and p57 along with a modulation of the oncogenic gene KRAS suggesting the potential of melatonin as a therapeutic approach in combination therapy of pancreatic ductal adenocarcinoma.
Anahtar Kelime: melatonin cisplatin Cetuximab

Melatonin, p21, p27, p53, p57, MDM2 ve KRAS Genlerinin modülasyonu yoluyla Pankreas Karsinomu Hücrelerinin (PANC-1) Cisplatin ve Cetuximab'a Kemosensitivitesini Artırır

Öz:
Tek başına veya kombinasyon halinde melatonin, setuksimab ve sisplatin tedavilerinin, hücre canlılığı ve gen ekspresyonları yoluyla duktal hücre kaynaklı bir insan pankreas karsinomunun PANC-1 hücreleri üzerindeki etkilerini araştırdık. PANC-1 hücrelerine kimyasallar uygulandıktan sonra hücreler 48 saat inkübasyona bırakıldı. İnkübasyon sonunda maddelerin hücre canlılığı üzerindeki metabolik etkileri MTT tahlili ile ölçüldü. p21, p27, p53, p57, MDM2 ve KRAS'ın gen ifadeleri RT-PCR ile belirlendi. Sisplatin veya setuksimab ile kombine melatonin kullanımı, p21 ve p57 genlerini arttırdı ve KRAS genini azalttı. Ayrıca, setuksimab ile kombine edilen melatonin, tek başına setuksimab ile karşılaştırıldığında p27 gen ekspresyonunu arttırdı ve hücre canlılığını azalttı. Hücre canlılığı, sisplatin ve sisplatin artı melatonin ve/veya setuksimab gruplarında en düşüktü. p53, sisplatin gruplarında en yüksek iken, sisplatin artı melatonin, tek başına sisplatine kıyasla p53 genini ve onun otoregülatör MDM2 genini azalttı. Sonuç olarak, sisplatin ve setuksimab ile kombinasyon halinde melatonin, tümör baskılayıcı genler p21, p27 ve p57 ile birlikte onkojenik gen KRAS'ın bir modülasyonunu arttırır, bu da melatoninin pankreas duktal adenokarsinomunun kombinasyon tedavisinde terapötik bir yaklaşım olarak potansiyelini ortaya koyar.
Anahtar Kelime: melatonin

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Lippi G, Mattiuzzi C. The global burden of pancreatic cancer. Arch Med Sci. 2020;16(4):820- 4.
  • [2] Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, et al. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. The International Journal of Biochemistry & Cell Biology. 2020;122:105731.
  • [3] Han H, Hou Y, Chen X, Zhang P, Kang M, Jin Q, et al. Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. Journal of the American Chemical Society. 2020;142(10):4944-54.
  • [4] Chandana S, Babiker HM, Mahadevan D. Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC). Expert Opin Investig Drugs. 2019;28(2):161-77.
  • [5] Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res. 2020;155:104740.
  • [6] Kaneko T, Sugimori K, Tozuka Y, Fukushima T, Okada K, Oka H, et al. Combination chemotherapy with gemcitabine and nab-paclitaxel for a metastatic pancreatic ductal adenocarcinoma patient undergoing hemodialysis. Clin J Gastroenterol. 2019;12(5):484-9.
  • [7] Xie H, Liu J, Ogden JR, Yin J, Jatoi A, Hubbard JM, et al. Survival Benefit of Combination Chemotherapy in Elderly Patients With Metastatic Pancreatic Ductal Adenocarcinoma. Am J Clin Oncol. 2020;43(8):586-90.
  • [8] Chen B, Xu M, Zhang H, Wang J-x, Zheng P, Gong L, et al. Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D-p53 signaling. Biochemical and biophysical research communications. 2013;437(4):526-31.
  • [9] Ergun Y, Ozdemir NY, Guner EK, Esin E, Sendur MA, Koksoy EB, et al. Comparison of gemcitabine monotherapy with gemcitabine and cisplatin combination in metastatic pancreatic cancer: a retrospective analysis. J BUON. 2018;23:116-21.
  • [10] Bragado P, Armesilla A, Silva A, Porras A. Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis. 2007;12(9):1733-42.
  • [11] Yin F, Zhang Q, Dong Z, Hu J, Ma Z. LncRNA HOTTIP Participates in Cisplatin Resistance of Tumor Cells by Regulating miR-137 Expression in Pancreatic Cancer. OncoTargets and therapy. 2020;13:2689.
  • [12] Jimeno A, Rubio-Viqueira B, Amador ML, Oppenheimer D, Bouraoud N, Kulesza P, et al. Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents. Cancer research. 2005;65(8):3003-10.
  • [13] Cheng Y-d, Yang H, Chen G-q, Zhang Z-c. Molecularly targeted drugs for metastatic colorectal cancer. Drug design, development and therapy. 2013;7:1315.
  • [14] Ruiz-Rabelo J, Vázquez R, Arjona Á, Perea D, Montilla P, Túnez I, et al. Improvement of capecitabine antitumoral activity by melatonin in pancreatic cancer. Pancreas. 2011;40(3):410-4.
  • [15] Li W, Wu J, Li Z, Zhou Z, Zheng C, Lin L, et al. Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-κB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer. Oncology reports. 2016;36(5):2861-7.
  • [16] Martín‐Renedo J, Mauriz JL, Jorquera F, Ruiz‐ Andrés O, González P, González‐Gallego J. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. Journal of pineal research. 2008;45(4):532-40.
  • [17] Leja-Szpak A, Nawrot-Porabka K, Goralska M, Jastrzebska M, Link-Lenczowski P, Bonior J, et al. Melatonin and its metabolite N1-acetyl-N2- formyl-5-methoxykynuramine (afmk) enhance chemosensitivity to gemcitabine in pancreatic carcinoma cells (PANC-1). Pharmacol Rep. 2018;70(6):1079-88.
  • [18] Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. The Lancet. 2016;388(10039):73-85.
  • [19] Neoptolemos J, Dunn J, Stocken D, Almond J, Link K, Beger H, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. The Lancet. 2001;358(9293):1576- 85.
  • [20] Mezencev R, Matyunina LV, Wagner GT, McDonald JF. Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes. Cancer Gene Ther. 2016;23(12):446-53.
  • [21] Chen W, Shen X, Xia X, Xu G, Ma T, Bai X, et al. NSC 74859‐mediated inhibition of STAT 3 enhances the anti‐proliferative activity of cetuximab in hepatocellular carcinoma. Liver International. 2012;32(1):70-7.
  • [22] Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, et al. Melatonin potentiates chemotherapy‐induced cytotoxicity and apoptosis in rat pancreatic tumor cells. Journal of pineal research. 2012;53(1):91-8.
  • [23] Fang Z, Jung KH, Yan HH, Kim SJ, Rumman M, Park JH, et al. Melatonin Synergizes with Sorafenib to Suppress Pancreatic Cancer via Melatonin Receptor and PDGFR-beta/STAT3 Pathway. Cell Physiol Biochem. 2018;47(5):1751- 68.
  • [24] Geske F, Nelson AC, Lieberman R, Strange R, Sun T, Gerschenson L. DNA repair is activated in early stages of p53-induced apoptosis. Cell Death & Differentiation. 2000;7(4):393-401.
  • [25] Slebos RJ, Hoppin JA, Tolbert PE, Holly EA, Brock JW, Zhang RH, et al. K-ras and p53 in pancreatic cancer: association with medical history, histopathology, and environmental exposures in a population-based study. Cancer Epidemiology and Prevention Biomarkers. 2000;9(11):1223-32.
  • [26] Lee Y-S, Chin Y-T, Yang Y-CS, Wei P-L, Wu HC, Shih A, et al. The combination of tetraiodothyroacetic acid and cetuximab inhibits cell proliferation in colorectal cancers with different K-ras status. Steroids. 2016;111:63-70.
  • [27] Song J, Ma S-J, Luo J-H, Zhang H, Wang R-X, Liu H, et al. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncology reports. 2018;39(4):1975-83.
  • [28] Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Jardim-Perassi BV, Calvinho GB, et al. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life sciences. 2017;183:98-109.
  • [29] Chi S-W, Lee S-H, Kim D-H, Ahn M-J, Kim J-S, Woo J-Y, et al. Structural details on mdm2-p53 interaction. Journal of Biological Chemistry. 2005;280(46):38795-802.
  • [30] Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, et al. MDM2 inhibitor MI319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. European Journal of Cancer. 2010;46(6):1122-31.
  • [31] Proietti S, Cucina A, Dobrowolny G, D'Anselmi F, Dinicola S, Masiello MG, et al. Melatonin down‐ regulates MDM 2 gene expression and enhances p53 acetylation in MCF‐7 cells. Journal of pineal research. 2014;57(1):120-9.
  • [32] Proietti S, Cucina A, D’Anselmi F, Dinicola S, Pasqualato A, Lisi E, et al. Melatonin and vitamin D3 synergistically down‐regulate Akt and MDM2 leading to TGFβ‐1‐dependent growth inhibition of breast cancer cells. Journal of pineal research. 2011;50(2):150-8.
  • [33] El-Deiry WS. p21 [WAF1] mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer research. 2016;76(18):5189-91.
  • [34] Thapa RK, Choi JY, Gupta B, Ramasamy T, Poudel BK, Ku SK, et al. Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer. Biomaterials science. 2016;4(9):1340-50.
  • [35] Terzuoli E, Nannelli G, Frosini M, Giachetti A, Ziche M, Donnini S. Inhibition of cell cycle progression by the hydroxytyrosol–cetuximab combination yields enhanced chemotherapeutic efficacy in colon cancer cells. Oncotarget. 2017;8(47):83207.
  • [36] Nooshinfar E, Bashash D, Safaroghli-Azar A, Bayati S, Rezaei-Tavirani M, Ghaffari SH, et al. Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer. Biomedicine & Pharmacotherapy. 2016;83:456-65.
  • [37] Juuti A, Nordling S, Louhimo J, Lundin J, Von Boguslawski K, Haglund C. Loss of p27 expression is associated with poor prognosis in stage I–II pancreatic cancer. Oncology. 2003;65(4):371-7.
  • [38] Zhu F, Dai SN, Xu DL, Hou CQ, Liu TT, Chen QY, et al. EFNB2 facilitates cell proliferation, migration, and invasion in pancreatic ductal adenocarcinoma via the p53/p21 pathway and EMT. Biomed Pharmacother. 2020;125:109972.
  • [39] Ayyagari VN, Hsieh T-hJ, Diaz-Sylvester PL, Brard L. Evaluation of the cytotoxicity of the Bithionol-cisplatin combination in a panel of human ovarian cancer cell lines. BMC cancer. 2017;17(1):49.
  • [40] Li WY, Li Q, Jing L, Wu T, Han LL, Wang Y, et al. P57‐mediated autophagy promotes the efficacy of EGFR inhibitors in hepatocellular carcinoma. Liver International. 2019;39(1):147-57.
  • [41] Guo H, Tian T, Nan K, Wang W. p57: A multifunctional protein in cancer. International journal of oncology. 2010;36(6):1321-9.
  • [42] Lanfredini S, Thapa A, O'Neill E. RAS in pancreatic cancer. Biochem Soc Trans. 2019;47(4):961-72.
  • [43] Oliverius M, Flasarova D, MohelnikovaDuchonova B, Ehrlichova M, Hlavac V, Kocik M, et al. KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes. Mutagenesis. 2019;34(5- 6):403-11.
APA GÜR C, ÖZKANLAR S (2021). Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. , 275 - 282. 10.46810/tdfd.998059
Chicago GÜR Cihan,ÖZKANLAR Seçkin Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. (2021): 275 - 282. 10.46810/tdfd.998059
MLA GÜR Cihan,ÖZKANLAR Seçkin Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. , 2021, ss.275 - 282. 10.46810/tdfd.998059
AMA GÜR C,ÖZKANLAR S Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. . 2021; 275 - 282. 10.46810/tdfd.998059
Vancouver GÜR C,ÖZKANLAR S Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. . 2021; 275 - 282. 10.46810/tdfd.998059
IEEE GÜR C,ÖZKANLAR S "Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes." , ss.275 - 282, 2021. 10.46810/tdfd.998059
ISNAD GÜR, Cihan - ÖZKANLAR, Seçkin. "Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes". (2021), 275-282. https://doi.org/10.46810/tdfd.998059
APA GÜR C, ÖZKANLAR S (2021). Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. Türk Doğa ve Fen Dergisi, 10(2), 275 - 282. 10.46810/tdfd.998059
Chicago GÜR Cihan,ÖZKANLAR Seçkin Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. Türk Doğa ve Fen Dergisi 10, no.2 (2021): 275 - 282. 10.46810/tdfd.998059
MLA GÜR Cihan,ÖZKANLAR Seçkin Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. Türk Doğa ve Fen Dergisi, vol.10, no.2, 2021, ss.275 - 282. 10.46810/tdfd.998059
AMA GÜR C,ÖZKANLAR S Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. Türk Doğa ve Fen Dergisi. 2021; 10(2): 275 - 282. 10.46810/tdfd.998059
Vancouver GÜR C,ÖZKANLAR S Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes. Türk Doğa ve Fen Dergisi. 2021; 10(2): 275 - 282. 10.46810/tdfd.998059
IEEE GÜR C,ÖZKANLAR S "Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes." Türk Doğa ve Fen Dergisi, 10, ss.275 - 282, 2021. 10.46810/tdfd.998059
ISNAD GÜR, Cihan - ÖZKANLAR, Seçkin. "Melatonin Enhances the Chemosensitivity of Pancreatic Carcinoma Cells (PANC-1) to Cisplatin and Cetuximab through modulation of p21, p27, p53, p57, MDM2 and KRAS Genes". Türk Doğa ve Fen Dergisi 10/2 (2021), 275-282. https://doi.org/10.46810/tdfd.998059