Yıl: 2021 Cilt: 5 Sayı: 4 Sayfa Aralığı: 316 - 330 Metin Dili: İngilizce DOI: 10.30939/ijastech..958368 İndeks Tarihi: 29-07-2022

A Review on Electric Vehicle Charging Systems and Current Status in Turkey

Öz:
The reality of global warming brings along an increase in environmental aware-ness. In recent years, this awareness has shifted public focus on electric vehicles. For a large group of people greenhouse gas emission is attributed to internal combustion engines. However, some challenges have arisen for electric vehicles. Limited range due to immature battery technologies and insufficient fast charging technologies that do not meet end user expectations are some major obstacles to overcome. Eventual-ly this situation negatively affects the sales and the wide use of electric vehicles. That is the reason why studies on wired and wireless charging systems play an important role in improving the sales performance of electric vehicles. In this study a thorough review of worldwide electric vehicle charging systems is conducted and discussed in the framework of the electric vehicles, charging stations, installations, and implemen-tation of standards in Turkey. The distribution of charging stations in Turkey are analyzed with respect to location, region, type, infrastructure requirements and future projections. The historical development of charging technologies, modes and charge levels have been studied in detail. As highlight of this study, wireless charging tech-nologies were also discussed and the historical development process was analyzed along with related standards. The current state of electric vehicle sector and charging stations in Turkey are discussed and provided with up to date information.
Anahtar Kelime: Dynamic charging Wireless power transfer (WPT) Electric vehicle (EV) Inductive power transfer (IPT)

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] British Autocars for the Sultan of Turkey. The Autocar. 1895;
  • [2] An Electric Dog-Cart. Eng. 1888;218.
  • [3] Rajashekara K. Present status and future trends in electric vehicle propulsion technologies. IEEE J Emerg Sel Top Power Electron. 2013;1(1):3–10.
  • [4] Wikipedia. EV1 [Internet]. 2020. Available from: https://tr.wikipedia.org/wiki/EV1
  • [5] Ching Chuen Chan. THE RISE & FALL OF ELECTRIC. Proc IEEE. 2013;101(1):206–12.
  • [6] Ekici YE. BATARYA YÖNETİM SİSTEMLERİ. 2019.
  • [7] International Energy Agency (IEA). Global EV Outlook 2020: Entering the decade of electric drive? Glob EV Outlook 2020. 2020;273.
  • [8] Global energy & CO2 status report 2017 [Internet]. Available from: https://scholar.google.com/scholar?cluster=971223945886245125& hl=tr&as_sdt=2005&sciodt=0,5
  • [9] He T, Bai Y, Zhu J. Optimal charging strategy of electric vehicles customers in a smart electrical car park. IET Conf Publ. 2016;2016(CP684):3–8.
  • [10] Yilmaz U, Turksoy O, Teke A. Intelligent control of high energy efficient two-stage battery charger topology for electric vehicles. Energy [Internet]. 2019;186:115825. Available from: https://doi.org/10.1016/j.energy.2019.07.155
  • [11] Ruiz V, Pfrang A, Kriston A, Omar N, Van den Bossche P, Boon- Brett L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew Sustain Energy Rev [Internet]. 2018;81(April):1427–52. Available from: http://dx.doi.org/10.1016/j.rser.2017.05.195
  • [12] Emadi A, Rajashekara K, Williamson SS, Lukic SM. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Trans Veh Technol. 2005;54(3):763–70.
  • [13] Hoque MM, Hannan MA, Mohamed A, Ayob A. Battery charge equalization controller in electric vehicle applications: A review. Renew Sustain Energy Rev [Internet]. 2017;75(November):1363–85. Available from: http://dx.doi.org/10.1016/j.rser.2016.11.126
  • [14] DERİCİOĞLU Ç, YİRİK E, ÜNAL E, CUMA MU, ONUR B, TÜMAY M. a Review of Charging Technologies for Commercial Electric Vehicles. Int J Adv Automot Technol. 2018;(June 2019).
  • [15] Praneeth AVJS, Williamson SS. A Review of Front End AC-DC Topologies in Universal Battery Charger for Electric Transportation. 2018 IEEE Transp Electrif Conf Expo, ITEC 2018. 2018;916–21.
  • [16] I. Wagner. Worldwide number of battery electric vehicles in use from 2012 to 2018 [Internet]. Available from: https://www.statista.com/statistics/270603/worldwide-number-of- hybrid-and-electric-vehicles-since-2009/
  • [17] A YOUNG. Global Electric Car Market: About 43% Of All Electric Passenger Cars Were Bought In 2014, Say German Clean Energy Researchers [Internet]. Available from: https://scholar.google.com/scholar_lookup?title=Global Electric Car Market%3A about 43%25 of all electric passenger cars were bought in 2014&author=A. Young&publication_year=2015
  • [18] insideevs. FINAL UPDATE: Quarterly Plug-In EV Sales Scorecard [Internet]. Available from: https://insideevs.com/news/343998/monthly-plug-in-ev-sales- scorecard/
  • [19] Zheng Z, Liu T, Zhang Y, Cheng X. Analysis on development trend of electric vehicle charging mode. ICEOE 2011 - 2011 Int Conf Electron Optoelectron Proc. 2011;1(Iceoe):440–2.
  • [20] Gao Y, Zhang X, Cheng Q, Guo B, Yang J. Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries. IEEE Access. 2019;7:43511–24.
  • [21] He J, Yang H, Huang HJ, Tang TQ. Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system. Phys A Stat Mech its Appl [Internet]. 2018;500:1–10. Available from: https://doi.org/10.1016/j.physa.2018.02.074
  • [22] Pappas JCK. a New Prescription for Electric Cars. Energy Law J [Internet]. 2014;35(1):151–98. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9 6365764&site=ehost-live
  • [23] Bräunl T. EV Charging Standards. 2012;1–5. Available from: http://therevproject.com/doc/2012-EVcharging-s.pdf
  • [24] Bohn T. Vehicle Charging ; Low Level AC To DC Extreme Fast Charging For Commercial Vehicles. 2019;1–6.
  • [25] SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler J1772_201001. 2010.
  • [26] Channegowda J, Pathipati VK, Williamson SS. Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency. IEEE Int Symp Ind Electron. 2015;2015–Septe:263–8.
  • [27] Wikipedia. SAE J1772 [Internet]. 2020. Available from: https://en.wikipedia.org/wiki/SAE_J1772
  • [28] SAE. J1772_201001 [Internet]. SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler. 2010. Available from: https://www.sae.org/standards/content/j1772_201001/
  • [29] Yilmaz M, Krein PT. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans Power Electron. 2013;28(5):2151–69.
  • [30] Karlsson P, Svensson J. DC Bus Voltage Control for a Distributed Power System. IEEE Trans Power Electron. 2003;18(6):1405–12.
  • [31] SAE. Charging – what can be more simple? [Internet]. Available from: https://www.sae.org/binaries/content/assets/cm/content/standards/ch argingprimer.pdf
  • [32] TE Connectivity. SAE J1772 Electric Vehicle Charge Connector Cable Assembly. 2015.
  • [33] McPhail D. Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response. Renew Energy [Internet]. 2014;67:103–8. Available from: http://dx.doi.org/10.1016/j.renene.2013.11.023
  • [34] America EN, Phoenix A. Lessons Learned – The EV Project DC Fast Charge - Demand Charge Reduction Prepared for the U . S . Department of Energy Award # DE-EE0002194. 2012.
  • [35] Ashique RH, Salam Z, Bin Abdul Aziz MJ, Bhatti AR. Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renew Sustain Energy Rev [Internet]. 2017;69(October 2016):1243–57. Available from: http://dx.doi.org/10.1016/j.rser.2016.11.245
  • [36] Harighi T, Bayindir R, Padmanaban S, Mihet-Popa L, Hossain E. An overview of energy scenarios, storage systems and the infrastructure for Vehicle-to-Grid technology. Energies. 2018;11(8):1–18.
  • [37] Ahmad A, Alam MS, Chabaan R. A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. IEEE Trans Transp Electrif. 2017;4(1):38–63.
  • [38] Harighi T, Bayindir R. Load Estimation Use in Electric Vehicle Charge Station Coordination in Different Node and Definite Area. 6th IEEE Int Conf Smart Grid, icSmartGrids 2018. 2019;264–71.
  • [39] Mwasilu F, Justo JJ, Kim EK, Do TD, Jung JW. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew Sustain Energy Rev [Internet]. 2014;34:501–16. Available from: http://dx.doi.org/10.1016/j.rser.2014.03.031
  • [40] Liu L, Kong F, Liu X, Peng Y, Wang Q. A review on electric vehicles interacting with renewable energy in smart grid. Renew Sustain Energy Rev [Internet]. 2015;51:648–61. Available from: http://dx.doi.org/10.1016/j.rser.2015.06.036
  • [41] Berman B. CHAdeMO and China release new EV quick-charging standard, in a bid to leapfrog the industry. 2020.
  • [42] Wallboxok. CHARGE MODES AND TYPES IN THE ELECTRIC CAR MARKET [Internet]. 2017. Available from: https://www.v2charge.com/modes-and-types-of-recharge-in-the- electric-car-market/
  • [43] dekra. Electric Vehicle conductive charging system. 2013;1–73.
  • [44] 61851 I. International Standard International Standard. 61010-1 © Iec2001. 2006;2006:13.
  • [45] Ricaud C, Vollet P. Connection method for charging systems – a key element for electric vehicles. Schneider Electr [Internet]. 2010; Available from: http://www.schneider- electric.co.uk/documents/electrical- distribution/en/local/ev/Connection-method-for-charging- systems.pdf
  • [46] EN IEC 61851-1. Electric vehicle conductive charging system [Internet]. Available from: https://standards.globalspec.com/std/13385383/en-iec-61851-1
  • [47] Wu YE. Design and implementation of AC conductive charging system for electrical vehicles. 2019 2nd Int Conf Electron Technol ICET 2019. 2019;282–8.
  • [48] Pod Point. EV Charging Connectors [Internet]. Available from: https://pod-point.com/guides/driver/ev-connector-types-speed
  • [49] Güneş D, Tekdemir İG, Karaarslan MŞ, Alboyacı B. Assessment of the impact of electric vehicle charge station loads on reliability indices. J Fac Eng Archit Gazi Univ. 2018;33(3):1073–84.
  • [50] ENEL X. The Different EV Charging Connector Types [Internet]. Available from: https://evcharging.enelx.com/eu/about/news/blog/552-ev-charging- connector-types
  • [51] SAE. SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler [Internet]. Available from: https://www.sae.org/standards/content/j1772_201710/
  • [52] Schmutzler J, Andersen CA, Wietfeld C. Evaluation of OCPP and IEC 61850 for smart charging electric vehicles. World Electr Veh J. 2013;6(4):863–74.
  • [53] NZTA. Charging point connectors and socket outlets [Internet]. Available from: https://www.nzta.govt.nz/planning-and- investment/planning/transport-planning/planning-for-electric- vehicles/national-guidance-for-public-electric-vehicle-charging- infrastructure/charging-point-connectors-and-socket-outlets/
  • [54] Wikipedia. Tesla Supercharger [Internet]. Available from: https://en.wikipedia.org/wiki/Tesla_Supercharger
  • [55] Mennek. Type 2 charging plug proposed as the common standard for Europe [Internet]. Available from: http://www.mennek.es/index.php?id=latest0&L=2&tx_ttnews[tt_ne ws]=929&cHash=46a00bad7f0d569c00bea9537556bbeb
  • [56] Carlson WB. Inventor of Dreams [Internet]. Available from: https://www.scientificamerican.com/article/inventor-of-dreams/
  • [57] Chatterjee S, Iyer A, Bharatiraja C, Vaghasia I, Rajesh V. Design Optimisation for an Efficient Wireless Power Transfer System for Electric Vehicles. Energy Procedia [Internet]. 2017;117:1015–23. Available from: http://dx.doi.org/10.1016/j.egypro.2017.05.223
  • [58] Sun L, Ma D, Tang H. A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew Sustain Energy Rev [Internet]. 2018;91(March):490–503. Available from: https://doi.org/10.1016/j.rser.2018.04.016
  • [59] Bi Z, Kan T, Mi CC, Zhang Y, Zhao Z, Keoleian GA. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl Energy [Internet]. 2016;179:413–25. Available from: http://dx.doi.org/10.1016/j.apenergy.2016.07.003
  • [60] Ho JS, Poon ASY. Energy transfer for implantable electronics in the electromagnetic midfield. Prog Electromagn Res. 2014;148(August):151–8.
  • [61] Brown WC. The History of Power Transmission by Radio Waves. IEEE Trans Microw Theory Tech. 1984;32(9):1230–42.
  • [62] Glasser PE. Power from the sun: Its future. 1968. p. 857–61.
  • [63] Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljačić M. Wireless power transfer via strongly coupled magnetic resonances. Science (80- ). 2007;317(5834):83–6.
  • [64] Zhang Y, Zhao Z, Chen K. Frequency decrease analysis of resonant wireless power transfer. IEEE Trans Power Electron. 2014;29(3):1058–63.
  • [65] Zhang Y, Zhao Z, Chen K. Frequency-splitting analysis of four-coil resonant wireless power transfer. IEEE Trans Ind Appl. 2014;50(4):2436–45.
  • [66] Park KJ, Lim J, Kim KY. The effect of the relationships between affiliated firms on direction of income shifting within business groups. J Appl Bus Res. 2014;30(3):817–32.
  • [67] Choi BH, Lee ES, Huh J, Rim CT. Lumped Impedance Transformers for Compact and Robust Coupled Magnetic Resonance Systems. IEEE Trans Power Electron. 2015;30(11):6046–56.
  • [68] Miller JM, Onar OC, Chinthavali M. Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J Emerg Sel Top Power Electron. 2015;3(1):147–62.
  • [69] Mi CC, Buja G, Choi SY, Rim CT. Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. IEEE Trans Ind Electron. 2016;63(10):6533–45.
  • [70] Li S, Mi CC. Wireless power transfer for electric vehicle applications. IEEE J Emerg Sel Top Power Electron. 2015;3(1):4–17.
  • [71] Machura P, Li Q. A critical review on wireless charging for electric vehicles. Renew Sustain Energy Rev [Internet]. 2019;104(January):209–34. Available from: https://doi.org/10.1016/j.rser.2019.01.027
  • [72] EPA. Greenhouse Gas Emissions [Internet]. Available from: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas- emissions-and-sinks-1990-2005
  • [73] Rahman I, Vasant PM, Singh BSM, Abdullah-Al-Wadud M, Adnan N. Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renew Sustain Energy Rev [Internet]. 2016;58:1039–47. Available from: http://dx.doi.org/10.1016/j.rser.2015.12.353
  • [74] Li L, Wang Z, Gao F, Wang S, Deng J. A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger. Appl Energy [Internet]. 2020;260(5):114156. Available from: https://doi.org/10.1016/j.apenergy.2019.114156
  • [75] Jang YJ. Survey of the operation and system study on wireless charging electric vehicle systems. Transp Res Part C Emerg Technol [Internet]. 2018;95(November 2017):844–66. Available from: https://doi.org/10.1016/j.trc.2018.04.006
  • [76] Choi SY, Gu BW, Jeong SY, Rim CT. Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J Emerg Sel Top Power Electron. 2015;3(1):18–36.
  • [77] Kalwar KA, Aamir M, Mekhilef S. A design method for developing a high misalignment tolerant wireless charging system for electric vehicles. Meas J Int Meas Confed [Internet]. 2018;118:237–45. Available from: http://dx.doi.org/10.1016/j.measurement.2017.12.013
  • [78] Ko YD, Jang YJ. Efficient design of an operation profile for wireless charging electric tram systems. Comput Ind Eng. 2019;127(xxxx):1193–202.
  • [79] Cho DH, Jung GH, Yoon U, Lee B. Development & Implementation of Electric Tram System with Wireless Charging Technology. ICT Express [Internet]. 2015;1(1):34–8. Available from: http://dx.doi.org/10.1016/S2405-9595(15)30019-9
  • [80] Bombardier. Bombardier PRIMOVE team. Projects of Bombardier PRIMOVE [Internet]. Available from: https://rail.bombardier.com/en.html
  • [81] Onar OC, Miller JM, Campbell SL, Coomer C, White CP, Seiber LE. A novel wireless power transfer for in-motion EV/PHEV charging. Conf Proc - IEEE Appl Power Electron Conf Expo - APEC. 2013;3073–80.
  • [82] Mark Kane. China’s ZTE Working On 30 kW Wireless Charging [Internet]. Available from: https://insideevs.com/news/327537/chinas-zte-working-on-30-kw- wireless-charging/
  • [83] Marsyukov V, Zhuldassov N, Bagheri M, Lu M, Naderi MS, Abedinia O, et al. Simulation of Dynamic Inductive Wireless Charging Using Overhead Line. India Int Conf Power Electron IICPE. 2018;2018–Decem:1–6.
  • [84] Niu S, Xu H, Sun Z, Shao ZY, Jian L. The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies. Renew Sustain Energy Rev [Internet]. 2019;114(June):109302. Available from: https://doi.org/10.1016/j.rser.2019.109302
  • [85] Afridi K. Wireless charging of electric vehicles [Internet]. 4th ed. Vol. 47, Bridge. Elsevier Inc.; 2017. 17-22 p. Available from: http://dx.doi.org/10.1016/B978-0-12-811407-0.00038-6
  • [86] Klontz KW, Esser A, Bacon RR, Divan DM, Novotny DW, Lorenz RD. An electric vehicle charging system with “universal” inductive interface. Proc Power Convers Conf - Yokohama 1993. 1993;227– 32.
  • [87] Kalwar KA, Aamir M, Mekhilef S. Inductively coupled power transfer (ICPT) for electric vehicle charging - A review. Renew Sustain Energy Rev [Internet]. 2015;47:462–75. Available from: http://dx.doi.org/10.1016/j.rser.2015.03.040
  • [88] Choi Y, Kwak B, Kim M. 4kW magnetic resonance Wireless Power System. 2016;7–9.
  • [89] Sandrine S, JOHN P. Greening the Accounts. Power Syst [Internet]. 2012;19(11):2–4. Available from: http://www.springerlink.com/index/10.1007/978-1-4614-0134- 6%5Cnhttp://dx.doi.org/10.1016/j.renene.2013.11.019%5Cnhttp://d x.doi.org/10.1016/j.rser.2012.09.028%5Cnhttp://www.scopus.com/i nward/record.url?eid=2-s2.0- 84921647184&partnerID=tZOtx3y1%5Cnhttp://ww
  • [90] Panchal C, Stegen S, Lu J. Review of static and dynamic wireless electric vehicle charging system. Eng Sci Technol an Int J [Internet]. 2018;21(5):922–37. Available from: https://doi.org/10.1016/j.jestch.2018.06.015
  • [91]pluglesspower. Plugless Power [Internet]. 2017. Available from: https://www.pluglesspower.com/shop/ [92]Ahmed K, Aamir M, Uddin MK, Mekhilef S. Misalignment Tolerance of Wireless Charging System. 2015;215–9.
  • [93]Kuzey S, Balci S, Altin N. Design and analysis of a wireless power transfer system with alignment errors for electrical vehicle applications. Int J Hydrogen Energy [Internet]. 2017;42(28):17928– 39. Available from: http://dx.doi.org/10.1016/j.ijhydene.2017.03.160
  • [94]Panchal C, Stegen S, Lu J. Review of static and dynamic wireless electric vehicle charging system. Eng Sci Technol an Int J. 2018;21(5):922–37.
  • [95]Wang S, Dorrell D. Review of wireless charging coupler for electric vehicles. IECON Proc (Industrial Electron Conf. 2013;7274–9.
  • [96]Jang YJ, Ko YD, Jeong S. Optimal design of the wireless charging electric vehicle. 2012 IEEE Int Electr Veh Conf IEVC 2012. 2012;
  • [97]García-Vázquez CA, Llorens-Iborra F, Fernández-Ramírez LM, Sánchez-Sainz H, Jurado F. Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches. Energy. 2017;137:42–57.
  • [98]Coca E. Wireless Power Transfer: Fundamentals and Technologies [Internet]. 2016. Available from: https://books.google.com.tr/books?hl=tr&lr=&id=dG- QDwAAQBAJ&oi=fnd&pg=PR9&ots=c6q6oAgBlc&sig=D22407 axU1IGruXGby5cT7lt7Bs&redir_esc=y#v=onepage&q&f=false
  • [99]Liu X, Bie Z. Optimal Allocation Planning for Public EV Charging Station Considering AC and DC Integrated Chargers. Energy Procedia [Internet]. 2019;159:382–7. Available from: https://doi.org/10.1016/j.egypro.2018.12.072
  • [100] Van Der Pijl F, Bauer P, Castilla M. Control method for wireless inductive energy transfer systems with relatively large air gap. IEEE Trans Ind Electron. 2013;60(1):382–90.
  • [101] Fuller M. Wireless charging in California: Range, recharge, and vehicle electrification. Transp Res Part C Emerg Technol [Internet]. 2016;67:343–56. Available from: http://dx.doi.org/10.1016/j.trc.2016.02.013
  • [102] Lee K, Pantic Z, Lukic SM. Reflexive field containment in dynamic inductive power transfer systems. IEEE Trans Power Electron. 2014;29(9):4592–602.
  • [103] Hata K, Imura T, Hori Y. Dynamic wireless power transfer system for electric vehicles to simplify ground facilities - Sensorless vehicle detection and power control strategy -. EVS 2017 - 30th Int Electr Veh Symp Exhib. 2017;1731–6.
  • [104] Zhang X, Yuan Z, Yang Q, Li Y, Zhu J, Li Y. Coil Design and Efficiency Analysis for Dynamic Wireless Charging System for Electric Vehicles. IEEE Trans Magn. 2016;52(7):1–5.
  • [105] COBB J. Momentum Dynamics’ Wireless Charging Could Relegate Plugs To History [Internet]. 2014. Available from: https://www.hybridcars.com/momentum-dynamics-wireless- charging-could-relegate-plugs-to-history/
  • [106] Yilmaz M, Krein PT. Review of the impact of vehicle-to-grid technologies on distribution s[1] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5. IEEE Trans Power Electron. 2013;28(12):5673–89.
  • [107] Li S, Mi CC. Wireless power transfer for electric vehicle applications. IEEE J Emerg Sel Top Power Electron. 2015;3(1):4–17.
  • [108] tehad. Elektrikli ve Hibrid Otomobil satışları %79 arttı [Internet]. Available from: http://tehad.org/2020/04/12/elektrikli-ve-hibrid- otomobil-satislari-y-artti/
  • [109] tüik. Motorlu Kara Taşıtları, Şubat 2020 [Internet]. Available from: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=33650
  • [110] tehad. Türkiye’deki Şarj İstasyonu sayısı Elektrikli Otomobili yakaladı. [Internet]. Available from: http://tehad.org/2019/03/25/turkiyedeki-sarj-istasyonu-sayisi- elektrikli-otomobili-yakaladi/
  • [111] Otokar. DORUK ELECTRA [Internet]. Available from: https://commercial.otokar.com.tr/otobus/sehir-ici-otobus/doruk- electra-otobus
  • [112] Temsa. md9 Electricity [Internet]. Available from: https://www.temsa.com/tr/tr/sehir-ici/md9-electricity
  • [113] Temsa. avenue electron [Internet]. Available from: https://www.temsa.com/tr/tr/sehir-ici/avenue-electron
  • [114] Bozankaya. Bozankaya Elektrikli Otobüs [Internet]. Available from: http://www.bozankaya.com.tr/elektrikliotobus/
  • [115] Dokuz Eylül Ü. SOLARİS EKİBİ, YENİ BAŞARISI “DEMOBİL “İ KUTLUYOR [Internet]. 2015. Available from: http://basin.deu.edu.tr/solaris-ekibi-yeni-basarisi-demobil-i- kutluyor/
  • [116] EVtmotor. TÜRKİYE’NİN YERLİ ELEKTRİKLİ OTOMOBİLİ [Internet]. Available from: http://www.evtmotor.com.tr/
  • [117] sabu. REVOLT 9’UNCU OLDU [Internet]. Available from: https://haber.subu.edu.tr/tr/node/249
APA ekici e, Dikmen I, Nurmuhammed M, Karadag T (2021). A Review on Electric Vehicle Charging Systems and Current Status in Turkey. , 316 - 330. 10.30939/ijastech..958368
Chicago ekici emre,Dikmen Ismail Can,Nurmuhammed Mustafa,Karadag Teoman A Review on Electric Vehicle Charging Systems and Current Status in Turkey. (2021): 316 - 330. 10.30939/ijastech..958368
MLA ekici emre,Dikmen Ismail Can,Nurmuhammed Mustafa,Karadag Teoman A Review on Electric Vehicle Charging Systems and Current Status in Turkey. , 2021, ss.316 - 330. 10.30939/ijastech..958368
AMA ekici e,Dikmen I,Nurmuhammed M,Karadag T A Review on Electric Vehicle Charging Systems and Current Status in Turkey. . 2021; 316 - 330. 10.30939/ijastech..958368
Vancouver ekici e,Dikmen I,Nurmuhammed M,Karadag T A Review on Electric Vehicle Charging Systems and Current Status in Turkey. . 2021; 316 - 330. 10.30939/ijastech..958368
IEEE ekici e,Dikmen I,Nurmuhammed M,Karadag T "A Review on Electric Vehicle Charging Systems and Current Status in Turkey." , ss.316 - 330, 2021. 10.30939/ijastech..958368
ISNAD ekici, emre vd. "A Review on Electric Vehicle Charging Systems and Current Status in Turkey". (2021), 316-330. https://doi.org/10.30939/ijastech..958368
APA ekici e, Dikmen I, Nurmuhammed M, Karadag T (2021). A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology, 5(4), 316 - 330. 10.30939/ijastech..958368
Chicago ekici emre,Dikmen Ismail Can,Nurmuhammed Mustafa,Karadag Teoman A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology 5, no.4 (2021): 316 - 330. 10.30939/ijastech..958368
MLA ekici emre,Dikmen Ismail Can,Nurmuhammed Mustafa,Karadag Teoman A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology, vol.5, no.4, 2021, ss.316 - 330. 10.30939/ijastech..958368
AMA ekici e,Dikmen I,Nurmuhammed M,Karadag T A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology. 2021; 5(4): 316 - 330. 10.30939/ijastech..958368
Vancouver ekici e,Dikmen I,Nurmuhammed M,Karadag T A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology. 2021; 5(4): 316 - 330. 10.30939/ijastech..958368
IEEE ekici e,Dikmen I,Nurmuhammed M,Karadag T "A Review on Electric Vehicle Charging Systems and Current Status in Turkey." International Journal of Automotive Science and Technology, 5, ss.316 - 330, 2021. 10.30939/ijastech..958368
ISNAD ekici, emre vd. "A Review on Electric Vehicle Charging Systems and Current Status in Turkey". International Journal of Automotive Science and Technology 5/4 (2021), 316-330. https://doi.org/10.30939/ijastech..958368