The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations

Yıl: 2021 Cilt: 42 Sayı: 3 Sayfa Aralığı: 312 - 319 Metin Dili: İngilizce DOI: 10.17824/yerbilimleri.1005583 İndeks Tarihi: 14-05-2022

The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations

Öz:
The region, which covers the northeast of Syria and the northwest of Iraq in the south of the Bitlis-Zagros Suture Belt, which was formed as a result of the collision of the Arabian and Eurasian plates during the Middle Miocene and Early Late Miocene, has a very important position in the world in terms of hydrocarbons. Hydrocarbon exploration activities require enormous labour and cost. It is aimed to show that the locations of the known hydrocarbon fields in the region coincide with the maximum values of the gravity tensor invariant with this study. In this way, it is aimed to show that both the working area can be narrowed, and the cost can be reduced by applying this method beforehand in similar regions. For this purpose, World Gravity Map 2012 global model gravity data, which is one of the most up-to-date satellite-based gravity data used by many researchers recently, was used. First of all, the spherical free air and complete spherical Bouguer gravity data were analyzed and then the potential was obtained by taking the vertical integration of the complete spherical Bouguer data. Tensors were calculated by using this potential data and gravity tensor invariant was calculated from tensors. When the gravity tensor invariant map is examined, it is observed that the areas with the maximum positive values observed, and the locations of the known oil wells are mostly compatible throughout the area. As a result, it would be very beneficial to apply this method for the region first for such high-cost studies.
Anahtar Kelime:

Hidrokarbon Konumlarının Belirlenmesinde Gravite Tensör Değişmezinden Yararlanmanın Önemi

Öz:
Orta Miyosen ve Erken Geç Miyosen sürecinde Arabistan ile Avrasya levhalarının çarpışması sonucu oluşan Bitlis-Zagros Kenet Kuşağı’nın güneyindeki Suriye’nin Kuzeydoğusu ile Irak’ın kuzeybatısını içine alan bu bölge hidrokarbon açısından dünyada çok önemli bir konuma sahiptir. Hidrokarbon arama faaliyetleri çok büyük emek ve maliyet gerektirmektedir. Bu çalışma ile bölgedeki bilinen hidrokarbon alanlarının yerlerinin gravite tensör değişmezinin maksimum değerleri ile çakıştığını göstermek amaçlanmıştır. Bu sayede benzer bölgelerde öncesinde bu yöntem uygulanarak hem çalışma alanının daraltılabileceği hem de maliyetin düşürülebileceğini göstermek hedeflenmiştir. Bu amaçla son zamanlarda çok fazla araştırmacı tarafından kullanılmakta olan uydu tabanlı gravite verilerinden en güncel olanlarından biri olan World Gravity Map 2012 global modeli gravite verileri kullanılmıştır. Öncelikle küresel serbest hava, tam küresel Bouguer gravite verileri analiz edilmiş ve sonrasında tam küresel Bouguer verisinin düşey integrali alınarak potansiyel elde edilmiştir. Bu potansiyel verisi kullanılarak tensörler ve tensörlerden de gravite tensör değişmezi hesaplanmıştır. Gravite tensör değişmez haritası incelendiğinde gözlenen maksimum pozitif değerlerin olduğu alanlar ile bilinen petrol kuyularının yerlerinin alan genelinde çoğunlukla uyumlu olduğu gözlenmektedir. Sonuç olarak böylesi büyük maliyetli çalışmalar için öncelikle bu yöntemin bölge için uygulanması çok faydalı olacaktır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdula, R., 2010. Petroleum source rock analysis of the Jurassic Sargelu Formation. Northern Iraq: Master’s thesis, Colorado School of Mines.
  • Aksoy, M., 2016. Dünyanın enerji görünümü. Insamer Araştırma 25, 32.
  • Al-Zubaidi, A.A., and Al-Zebari, A.Y., 1998. Prospects for production and marketing of Iraq’s heavy oil. Ministry of Oil, State Oil Marketing, Baghdad, Iraq, 1998.221,10.
  • Barrier, E., Machhour, L., and Blaizot, M., 2014. Petroleum systems of Syria, in L. Marlow, C. Kendall and L. Yose, eds., Petroleum systems of the Tethyan region: AAPG Memoir 106, p. 335–378.
  • Barthelmes, F., 2009. Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM), http://icgem. gfz-potsdam.de.
  • Baur, O., Sneeuw, N., and Grafarend, E.W., 2008. Methodology and use of tensor invariants for satellite gravity gradiometry. Journal of Geodesy, 82(4-5), 279-293.
  • Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biancale, R., Gabalda, G., Reinquin, F., and Sarrailh, M., 2012. World gravity map. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris.
  • Bouman, J., Ebbing, J., Fuchs, M., Schmidt, M., Bosch, W., Schwatke, C., and Schavemaker, Y., 2011. Heterogeneous gravity data combination for Earth interior and geophysical exploration research. In Proceedings GOCE User Workshop 2011.
  • Dogru, F., and Pamukcu, O., 2019. Analysis of gravity disturbance for boundary structures in the Aegean Sea and Western Anatolia. Geofizika, 36(1), 53-76.
  • Dogru, F., 2022. Exploring of Invariants and Euler Deconvolution of Eastern Part of Black Sea. [in press].
  • Ebbing, J., Bouman, J., and Skaar, J.A., 2015. The use of gravity gradients and invariants for geophysical modelling-Example from airborne and satellite data. In International Workshop and Gravity, Electrical & Magnetic Methods and their Applications, Chenghu, China, 19-22 April 2015 (pp. 177-180). Society of Exploration Geophysicists and Chinese Geophysical Society.
  • Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T., Götze, H. J., and Biancale, R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services.
  • Gilardoni, M., Reguzzoni, M., and Sampietro, D., 2016. GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod, 60:228–247.
  • Gullu, A., Yaşar, E., and Özdemir, A., 2021. Türkiye’deki Petrol ve Doğalgaz Sondaj Kuyularının Optimizasyonu. European Journal of Science and Technology, 27, 398-406.
  • Jassim, S.Z., and Al-Gailani, M., 2006. Hydrocarbons, chapter 18, in Jassim, S.Z., and J.C. Goff, eds., Geology of Iraq, first edition: Brno, Czech Republic, Prague and Moravian Museum, 232-250.
  • Liang, W., Li, J., Xu, X., Zhang, S., and Zhao, Y., 2020. A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering, 6(8), 860-878.
  • Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A., Klinger, B., Strasser, S., and Zehentner, N., 2018. ITSG-Grace2018 - Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services.
  • Murphy, C.A., and Dickinson, J.L., 2009. Exploring exploration play models with FTG gravity data, in: 11th SAGA Biennial Technical Meeting and Exhibition, Swaziland, 16–18 September 2009, 89–91.
  • Oruc, B., 2010. Depth estimation of simple causative sources from gravity gradient tensor invariants and vertical component. Pure and applied geophysics, 167(10), 12.
  • Oruc, B., 2011. Enhancement of linear features from gravity anomalies by using curvature gradient tensor matrix. In 6th Congress of the Balkan Geophysical Society (pp. cp-262). European Association of Geoscientists & Engineers.
  • Oruc, B., Sertcelik, İ., Kafadar, Ö., and Selim, H.H., 2013. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88, 105-113.59-1272.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., and Factor, J.K., 2008. The EGM2008 global gravitational model. In AGU Fall Meeting Abstracts, G22A-01.
  • Seyitoglu, G., Esat, K., and Kaypak, B., 2017. The neotectonics of southeast Turkey, northern Syria, and Iraq: the internal structure of the Southeast Anatolian Wedge and its relationship with recent earthquakes. Turkish Journal of Earth Sciences, 26(2), 105-126.
  • Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X., 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1-12.
APA DOĞRU F (2021). The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. , 312 - 319. 10.17824/yerbilimleri.1005583
Chicago DOĞRU FİKRET The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. (2021): 312 - 319. 10.17824/yerbilimleri.1005583
MLA DOĞRU FİKRET The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. , 2021, ss.312 - 319. 10.17824/yerbilimleri.1005583
AMA DOĞRU F The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. . 2021; 312 - 319. 10.17824/yerbilimleri.1005583
Vancouver DOĞRU F The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. . 2021; 312 - 319. 10.17824/yerbilimleri.1005583
IEEE DOĞRU F "The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations." , ss.312 - 319, 2021. 10.17824/yerbilimleri.1005583
ISNAD DOĞRU, FİKRET. "The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations". (2021), 312-319. https://doi.org/10.17824/yerbilimleri.1005583
APA DOĞRU F (2021). The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. Yerbilimleri, 42(3), 312 - 319. 10.17824/yerbilimleri.1005583
Chicago DOĞRU FİKRET The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. Yerbilimleri 42, no.3 (2021): 312 - 319. 10.17824/yerbilimleri.1005583
MLA DOĞRU FİKRET The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. Yerbilimleri, vol.42, no.3, 2021, ss.312 - 319. 10.17824/yerbilimleri.1005583
AMA DOĞRU F The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. Yerbilimleri. 2021; 42(3): 312 - 319. 10.17824/yerbilimleri.1005583
Vancouver DOĞRU F The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations. Yerbilimleri. 2021; 42(3): 312 - 319. 10.17824/yerbilimleri.1005583
IEEE DOĞRU F "The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations." Yerbilimleri, 42, ss.312 - 319, 2021. 10.17824/yerbilimleri.1005583
ISNAD DOĞRU, FİKRET. "The Importance of Utilizing Gravity Tensor Invariant in Determining Hydrocarbon Locations". Yerbilimleri 42/3 (2021), 312-319. https://doi.org/10.17824/yerbilimleri.1005583