Yıl: 2022 Cilt: 8 Sayı: 1 Sayfa Aralığı: 134 - 141 Metin Dili: Türkçe DOI: 10.21324/dacd.991394 İndeks Tarihi: 29-07-2022

Dikey Eksende Eğilim Çözümlemesi Yöntemi

Öz:
Sera gazı miktarındaki ciddi artışla birlikte iklim değişikliği daha da hızlanmıştır. Meteorolojik ve hidrolojik veriler incelendiğinde bu değişikliğin etkisi net biçimde ortaya çıkmaktadır. Verilerin incelenmesi için de eğilim çözümleme yöntemleri sıklıkla kullanılmaktadır. Son zamanlarda Şen’in geliştirdiği Yenilikçi eğilim çözümlemesi (YEÇ) yöntemi görselleştirme yaparak verilerin trend durumlarının açığa çıkarılmasına ve tanımlanmasına imkân tanımaktadır. Bu makalenin temel amacı farklı bir grafik gösterimine başvurarak YEÇ yönteminin bir türevini geliştirmektir ve eğilimleri alternatif bir yaklaşım ile ortaya çıkarmaktır. Türkiye'nin Akdeniz, Akdeniz-Karadeniz geçiş ve karasal iklim bölgelerinde ölçülmüş veriler için uygulanan bu alternatif yöntem klasik YEÇ yaklaşımına göre farklı eğilim bilgilerini ortaya çıkarmaktadır. Bu makalede önerilen dikey eksen trend analiz yaklaşımı YEÇ yönteminden farklı olarak grafik üzerinde veri sayısını göstermektedir ve ölçümlerin yüksek, orta ve düşük değer aralığında nasıl dağıldığını açığa çıkarmaktadır. Bu çalışmada yapılan uygulamalar Türkiye'nin farklı kısımlarında yer alan Kırklareli, Yalova ve Alanya istasyonlarındaki 50 yıllık yağış kayıtlarını içermektedir. Kırklareli verilerinde bütüncül artan trend tespit edilirken önerilen yöntem ile ayrıca ölçümlerin tüm veri aralıklarında homojen dağıldığı görülmüştür. Yalova ve Alanya ölçümlerinde ise bütüncül olmayan azalan trende rastlanırken verilerin dağılımında homojen olmayan durum belirlenmiştir.
Anahtar Kelime: İklim Değişikliği Zaman Dizisi Yağış Eğilim

Trend Analysis Method on Vertical Axis

Öz:
Climate change has accelerated with the significant increase in the amount of greenhouse gases. When the meteorological and hydrological data are examined, the effect of this change is clearly revealed. Trend test methods are frequently used to determine trends on the data. Recently, Şen-innovative trend analysis (ITA) method provides the ability to visualize inspection and identification of trend conditions. The main objective of this paper is to attempt determination and visualization of trends by means of a special graphical representation based on alternative illustration of ITA. The suggested methodology shows different trend information than classical ITA on the Mediterranean, Mediterranean-Black Sea transitional, and continental climate regions in Turkey. The vertical axis trend analysis approach proposed in this study, shows the number of data on the graph and reveals how the measurements are distributed in the high, medium and low value ranges unlike the ITA method. This research comprises 50-year rainfall records in Kırklareli, Yalova, and Alanya stations located in Turkey. The monotonic increasing trend is detected for Kırklareli data and also it is observed that the measurements are homogeneously distributed with the suggested method. In Yalova and Alanya measurements, there are non-monotonic decreasing trends and non-homogeneous distributions are determined.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alashan S., (2018), An improved version of innovative trend analyses, Arab J Geosci, 11(3), 50, doi: 10.1007/s12517-018-3393-x.
  • Alashan S., (2020), Combination of modified Mann‐Kendall method and Şen innovative trend analysis. Engineering Reports, 2(3), e12131, doi: 10.1002/eng2.12131.
  • Chiew F.H.S., McMahon T.A., (1993), Detection of trend or change in annual flow of Australian rivers, Int. J. of Climatology, 13, 643-653.
  • Cui L., Wang L., Lai Z., Tian Q., Liu W., Li J., (2017), Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960–2015, J Atmos Sol-Terr Phy, 164, 48-59.
  • Dabanlı İ., Şen Z., Yeleğen M.Ö., Şişman E., Selek B., Güçlü Y.S., (2016), Trend assessment by the innovative-Şen method, Water Resour Manag, 30(14), 5193–5203.
  • Dabanli İ., Şişman E., Güçlü Y.S., Birpınar M.E., Şen Z., (2021), Climate change impacts on sea surface temperature (SST) trend around Turkey seashores, Acta Geophysica, 69(1), 295-305.
  • Ghate A.S., Timbadiya P.V., (2021), Comprehensive Extreme Rainfall Analysis: A study on Ahmedabad region, India, ISH Int J Hydraulic Eng., doi: 10.1080/09715010.2021.1905566.
  • Gocic M., Trajkovic S., (2013), Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172-182.
  • Güçlü Y.S., (2018a), Alternative Trend Analysis: Half Time Series Methodology, Water Resources Management, 32, 2489–2504.
  • Güçlü Y.S., (2018b), Fundamentals and applications of comparative innovative trend analysis, J Nat Hazards Environ., 4(2), 182-191.
  • Güçlü Y.S., (2018c). Multiple Şen-innovative trend analyses and partial Mann-Kendall test, J Hydrol, 566, 685-704.
  • Güçlü Y.S., Şişman E., Dabanlı İ., (2020), Innovative triangular trend analysis, Arabian Journal of Geosciences, 13, 27, doi: 10.1007/s12517-019-5048-y.
  • Güçlü Y.S., (2020), Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA, J Hydrol, 584, 124674, doi: 10.1016/j.jhydrol.2020.124674.
  • Haan C. T., (1977), Statistical Methods in Hydrology, The Iowa State University Press, Ames, Iowa, 378ss.
  • Hamed K.H., Rao A.R., (1998), A modified Mann-Kendall trend test for autocorrelated data, Journal of Hydrology, 204, 182-196.
  • Jhajharia D., Shrivastava S.K., Sarkar D., Sarkar S., (2009), Temporal characteristics of pan evaporation trends under the humid conditions of northeast India, Agricultural and Forest Meteorology, 149, 763–770.
  • Jones V.J.R., Schwartz J.S., Ellis K.N., Hathaway J.M., Jawdye C.M., (2015), Temporal variability of precipitation in the Upper Tennessee, Journal of Hydrol: Regional Studies, 3, 125–138.
  • Kendall M.G., (1975), Rank Correlation Method, Charless Griffin, London, 202ss.
  • Mann H.B., (1945), Nonparametric tests against trend, Econometrica, 13, 245–259.
  • Mohorji A.M., Şen Z., Almazroui M., (2017), Trend Analyses Revision and Global Monthly Temperature Innovative Multi-Duration Analysis, Earth Syst and Environ, 1(1), 9, doi: 10.1007/s41748-017-0014-x.
  • Nalley D., Adamowski J., Khalil B., Ozga-Zielinski B., (2013), Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform, Atmospheric Research, 132–133, 375–398.
  • Saplioglu K., Kilit M., Bekir Yavuz K., (2014), Trend Analysis of Streams in the Western Mediterranean Basin of Turkey, Fresenius Environmental Bulletin, 23(1A), 313-324.
  • Sen P.K., (1968), Estimates of the regression coefficient based on Kendall’s Tau, Journal of the American Statistical Association, 63(324), 1379–1389.
  • Sonali P., Kumar Nagesh D., (2013), Review of trend detection methods and their application to detect temperature changes in India, Journal of Hydrology, 476, 212-227.
  • Şen Z., (2012), Innovative Trend Analysis Methodology, J. Hydrol. Eng., 17(9), 1042–1046.
  • Şen Z., (2014), Trend Identification Simulation and Application, Journal of Hydrologic Engineering, 19(3), 635-642.
  • Şen Z., (2017a), Innovative trend significance test and applications, Theor. Appl. Climatol., 127(3-4), 939–947.
  • Şen Z., (2017b), Innovative trend methodologies in science and engineering, Springer International Publishing, Heidelberg, Germany, 349ss.
  • Taylor C.H., Loftis J.C., (1989), Testing for trend in lake and groundwater quality time series, Water Resources Bulletin, 25(4), 715-726.
  • Timbadiya P.V., Mirajkar A., Patel P., Porey P., (2013), Identification of trend and probability distribution for time series of annual peak flow in Tapi Basin, India, ISH Int J Hydraulic Eng, 19(1), 11-20.
APA Güçlü Y (2022). Dikey Eksende Eğilim Çözümlemesi Yöntemi. , 134 - 141. 10.21324/dacd.991394
Chicago Güçlü Yavuz Selim Dikey Eksende Eğilim Çözümlemesi Yöntemi. (2022): 134 - 141. 10.21324/dacd.991394
MLA Güçlü Yavuz Selim Dikey Eksende Eğilim Çözümlemesi Yöntemi. , 2022, ss.134 - 141. 10.21324/dacd.991394
AMA Güçlü Y Dikey Eksende Eğilim Çözümlemesi Yöntemi. . 2022; 134 - 141. 10.21324/dacd.991394
Vancouver Güçlü Y Dikey Eksende Eğilim Çözümlemesi Yöntemi. . 2022; 134 - 141. 10.21324/dacd.991394
IEEE Güçlü Y "Dikey Eksende Eğilim Çözümlemesi Yöntemi." , ss.134 - 141, 2022. 10.21324/dacd.991394
ISNAD Güçlü, Yavuz Selim. "Dikey Eksende Eğilim Çözümlemesi Yöntemi". (2022), 134-141. https://doi.org/10.21324/dacd.991394
APA Güçlü Y (2022). Dikey Eksende Eğilim Çözümlemesi Yöntemi. Doğal Afetler ve Çevre Dergisi, 8(1), 134 - 141. 10.21324/dacd.991394
Chicago Güçlü Yavuz Selim Dikey Eksende Eğilim Çözümlemesi Yöntemi. Doğal Afetler ve Çevre Dergisi 8, no.1 (2022): 134 - 141. 10.21324/dacd.991394
MLA Güçlü Yavuz Selim Dikey Eksende Eğilim Çözümlemesi Yöntemi. Doğal Afetler ve Çevre Dergisi, vol.8, no.1, 2022, ss.134 - 141. 10.21324/dacd.991394
AMA Güçlü Y Dikey Eksende Eğilim Çözümlemesi Yöntemi. Doğal Afetler ve Çevre Dergisi. 2022; 8(1): 134 - 141. 10.21324/dacd.991394
Vancouver Güçlü Y Dikey Eksende Eğilim Çözümlemesi Yöntemi. Doğal Afetler ve Çevre Dergisi. 2022; 8(1): 134 - 141. 10.21324/dacd.991394
IEEE Güçlü Y "Dikey Eksende Eğilim Çözümlemesi Yöntemi." Doğal Afetler ve Çevre Dergisi, 8, ss.134 - 141, 2022. 10.21324/dacd.991394
ISNAD Güçlü, Yavuz Selim. "Dikey Eksende Eğilim Çözümlemesi Yöntemi". Doğal Afetler ve Çevre Dergisi 8/1 (2022), 134-141. https://doi.org/10.21324/dacd.991394