Yıl: 2021 Cilt: 26 Sayı: 4 Sayfa Aralığı: 573 - 583 Metin Dili: Türkçe DOI: 10.5578/flora.20219602 İndeks Tarihi: 16-05-2022

Bağırsak Mikrobiyotası ve İmmünogenetik

Öz:
İnsan mikrobiyotası, konakçının belirli yüzeylerinde (barsak, deri, ağız vb.) konumlanmıştır ve 1013 ile 1014 kadar mikroorganizmayaev sahipliği yapmaktadır. Bağırsak mikrobiyotası ürettikleri SCFA (“Short-Chain Fatty Acid”= SCFA)’lar ile insan fizyolojisinde, bağırsakmukozal bariyerinin yapısal bütünlüğünü koruyarak patojenlerin kolonizasyonunu engellemek, barsak-beyin ekseni iletişimine katılmak,bağışıklık sistemini hazırlamak ve besin sindirimine katkıda bulunmak gibi rollere sahiptir. Bağırsak mikrobiyotasının immün sistemleolan yakın ilişkisinin yanı sıra genetik faktörlerle de ilişkisi bulunur. MUC2, MyD88, IgA, NOD2, NLRP6 ve TLR5 gibi konakçı genlerdekimutasyonlar, bağırsak mikrobiyal kompozisyonu üzerinde önemli bir etkiye sahiptir ve bağırsak homeostazını veya disbiyozisi belirle yebilir. Konakçının bağışıklık sistemi bir ekosistem yöneticisi gibi çalışır ve mikrobiyal bileşimin çeşitliliğini kontrol etmede kritik bir roloynar. MHC (Major Histocompatibility Complex) genleri de dahil olmak üzere konağın immün sistemi ile ilgili genetik faktörler, bağırsakmikrobiyal kompozisyonu üzerinde güçlü bir etkiye sahiptir.
Anahtar Kelime:

Intestinal Microbiota and Immunogenetic

Öz:
Human microbiota is located on specific surfaces of the host (gut, skin, mouth, etc.), and includes 1013-1014 number of microorgan isms. Intestinal microbiota has roles such as preventing the colonization of pathogens by protecting the structural integrity of the intes tinal mucosal barrier, participating in the intestinal-brain axis communication, preparing the immune system for necessary situationsand contributing to food digestion in human physiology with the short-chain fatty acid (SCFA) they produce. Intestinal microbiota hasassociation with genetic factors in addition to its close relationship with the immune system. Mutations in host genes such as MUC2,MyD88, IgA, NOD2, NLRP6, and TLR5 have significant impact on gut microbial composition and can determine gut homeostasis ordysbiosis. The host’s immune system functions like an ecosystem manager and plays a critical role in controlling the diversity of microbial composition. Genetic factors related to the host’s immune system, including major histocompatibility complex (MHC) genes, have astrong effect on the gut microbial composition.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008;6:776-88.
  • 2. Duerkop BA, Hooper LV. Resident viruses and their interactions with the immune system. Nat Immunol 2013;14:654- 9.
  • 3. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 2014;14:405-16.
  • 4. Lederberg J, McCray AT. ‘Ome sweet ‘Omics - a genealogical treasury of words. Scientist 2001;15(7):8.
  • 5. Qin J, Li R, Raes J, Arumugam M, Burgdorf SK, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
  • 6. Koren O, Goodrich KJ, Cullender CT, Spor A, Laitinen K, Bäckhed KH, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012;150:470- 80.
  • 7. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012;336:1268-73.
  • 8. NIH HMPAT. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 2019;7(1):31.
  • 9. Human Microbiome Project Consortium (HMP). Erişim İzni: 13 Haziran 2012. Nature 2012;486(7402):207-214.
  • 10. Leah TS, Reine EN, Jennifer GN, Karin BM. Does consumption of fermented foods modify the human gut microbiota? J Nutr 2020;00:1-13.
  • 11. Moodley Y, Linz B, Yamaoka Y, Windsor MH, Breurec S, Wu YJ, et al. The peopling of the Pacific from a bacterial perspective. Science 2009;23:527-30.
  • 12. Cox LM and Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol 2015;11(3):182-90.
  • 13. Christian H, Zubrick SR, Foster S, Giles-Corti B, Bull F, Wood L, et al. The influence of the neighborhood physical environment on early child health and development: A review and call for research. Health Place 2015;33:25-36.
  • 14. Balmer ML, Schurch CM, Saito Y, Geuking MB, Li H, Cuenca M, et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 2014;193:5273-83.
  • 15. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host bacterial mutualism in the human intestine. Science 2005;307:1915-20.
  • 16. David LA, Maurice CF, Carmody RN, Gootenberg JE, Button EB, Wolfe AV, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559-63.
  • 17. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012;9:577-89.
  • 18. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80.
  • 19. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2015;7(1):17-44.
  • 20. Darzi J, Gary S, Robertsen DM. SCFA have a role in appetite regulation? Article in Proceedings of The Nutrition Society 2011;70(1):119-28.
  • 21. Jory J. Cobalamin, Microbiota and Epigenetics, Springer International Publishing AG V.R. Preedy, V.B. Patel (eds.), Handbook of Nutrition, Diet, and Epigenetics, 2017.
  • 22. Furusawa Y, Obata Y, Fukuda S, Endo A. T, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446-50.
  • 23. Sorbara MT, Dubin K, Littmann ER, Moody TU, Fontana E, Seok R, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med 2019;216(1):84-98.
  • 24. McIntosh BE, Hogenesch JB, Bradfield CA. Mammalian PerArnt-Sim proteins in environmental adaptation. Annu Rev Physiol 2010;72:625-45.
  • 25. Kho ZY, Laf SK. The human gut microbiome a potential controller of wellness and disease. Front Microbiol 2018;9:1835.
  • 26. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP. Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2010;2:53-66.
  • 27. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011;9:279-90.
  • 28. De Palma G, Capilla A, Nova E, Castillejo G, Varea V, Pozo T et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL Study. PLoS ONE 2012;7:e30791.
  • 29. Benson KA, Kelly AS, Legge R, Ma F, Low JS, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 2010;107:18933-8.
  • 30. Der-Boghossian HA., Saad RS, Perreault C, Provost C, Jacques Danielle, Kadi NL, et al. Role of insulin on jejunal PepT1 expression and function regulation in diabetic male and female rats. Can J Physiol Pharmacol 2010;88:753-9.
  • 31. Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 2011;61:423-8.
  • 32. Fujiwara H, Docampo MD, Riwes M, Peltier D, Toubai T, Henig I, et al. Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nat commun 2018;9:3674.
  • 33. Sleiman SF, Basso M, Mahishi L, Kozikowski AP, Donohoe ME, Langley B, et al. Putting the “HAT” back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Investig Drugs 2009;18:573-84.
  • 34. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 2016;17:505-13.
  • 35. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010;10:131-44.
  • 36. Palm WN, Zoete de RM, Cullen WT, Barry AN, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014;158:100010.
  • 37. McDermott AJ, Huffnagle GB The microbiome and regulation of mucosal immunity. Immunology 2014;142:24-31.
  • 38. Chow J, Lee SM, Shen Y, Khosravi A & Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol 2010;107:243-74.
  • 39. Ivanov II, Frutos L de R, Manel N, Yoshinaga K, Rifkin BD, Sartor BR, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2009;4:337-49.
  • 40. Ivanov II, Atarashi K, Manel N, Brodie LE, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485-98.
  • 41. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005;122:107- 18.
  • 42. 42)Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331:337-41.
  • 43. Erny D, Angelis de HLA, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015;18:965-77.
  • 44. Xu H, Liu M, Cao J, Li X, Fan D, Xia Y, et al. The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res 2019;7546047.
  • 45. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010;107(27):12204-9.
  • 46. Surana NK, Kasper DL. Deciphering the tete- a-tete between the microbiota and the immune system. J Clin Invest 2014;12:4197-203.
  • 47. An D, Oh FS, Olzsak T, Neves FJ, Avci YF, Hasdemir ED, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014;156:123-33.
  • 48. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008;453:620-5.
  • 49. Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke RK, et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med 2002;8:575-81.
  • 50. Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015;6:14.
  • 51. Satoh-Takayama N, Lesjean-Pottier S, Sawa S, Vosshenrich JAC, Santo di PJEG. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008;29:958-70.
  • 52. Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2011;11:445-56.
  • 53. Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the aEb7 integrin. Nature 1994;372:190-3.
  • 54. Young-Ha L, Dae-Whan S. T cell phenotype and intracellular IFN-gamma production in peritoneal exudate cells and gut intraepithelial lymphocytes during acute Toxoplasma gondii infection in mice. Korean J Parasitol 2002;Sep;40(3):119- 29.
  • 55. Spits H, Artis D, Colonna M, Diefenbach A, Santo di P.J., Eberl G, et al. Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol 2013;13:145-9.
  • 56. von Moltke J, Ji M.Liang, H.E. & Locksley, R.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016;529:221-5.
  • 57. Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Bérard M, Kleinschek M, et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol 2011;12:320-6.
  • 58. Powell N, Walker WA, Stolarczyk E, Canavan BJ, Gokmen RM, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012;37:674-84.
  • 59. Goto Y, Obata T, Kunisawa J, Sato S, Ivanov I, Lamichane A, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014;345(6202):1254009.
  • 60. Sonnenberg GF, Monticelli AL, Alenghat T, Fung CT, Hutnick AN, Kunisawa J, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012;336:1321-5.
  • 61. Der-Boghossian HA, Saad RS, Perreault C, Provost C, Jacques Danielle, Kadi NL, et al. Role of insulin on jejunal PepT1 expression and function regulation in diabetic male and female rats. Can J Physiol Pharmacol 2010;88:753-9.
  • 62. Marietta E, Rishi A, Taneja V. Immunogenetic control of the intestinal microbiota, Immunology 2015;145:313-22.
  • 63. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001;167:1882-5.
  • 64. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010;10:131-44.
  • 65. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev 2006;2:203-12.
  • 66. Yang SK, Eckmann L, Panja A, Kagnoff MF. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 1997;113:1214-23.
  • 67. Awane M, Andres PG, Li DJ, Reinecker HC. NF-jB-inducing kinase is a common mediator of IL-17-, TNF-a-, and IL-1b-induced chemokine promoter activation in intestinal epithelial cells. J Immunol 1999;162:5337-44.
  • 68. Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 2005;174:4901-7.
  • 69. Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 1987;166:1471-83.
  • 70. Parr EL, Kirby WN. An immunoferritin labeling study of H-2 antigens on dissociated epithelial cells. J Histochem Cytochem 1979;27:1327-36.
  • 71. Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 2013;11(4):227-38.
  • 72. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nature reviews Immunology. 2013;13(11):790-801.
  • 73. Rodriguez-Concepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002;130(3):1079- 89.
  • 74. Toivanen P, Vaahtovuo J, Eerola E. Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect Immun 2001;69(4):2372-7.
  • 75. Linehan LJ, Harrison JO, Han Ji-S, Byrd L, Cvijin VI, Villarino VA, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 2018;172(4):784- 796.e18.
  • 76. Shiina T, Blancher A, Inoko H, Kulski JK. Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 2017;150:127-38.
  • 77. Gough SC, Simmonds MJ. The HLA region and autoimmune disease: associations and mechanisms of action. Curr Genomics 2007;8:453-65.
  • 78. Han Y, Xiao H. Whole food-based approaches to modulating gut microbiota and associated diseases. Ann Rev Food Sci Techn 2020;11(1):119-43.
  • 79. Fine RL, Manfredo Vieira S, Gilmore MS, Kriegel MA. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes 2020;11:217-30.
  • 80. Lynch SV, Ng SC, Shanahan F, Tilg H. Translating the gut microbiome: ready for the clinic? Nature Reviews Gastroenterol Hepatol 2019;16:656-61.
  • 81. William ER, Teri MG, Martin AK. Host-microbiota interactions in immune-mediated diseases, Nat Rev Microbiol 2020;21:538.
  • 82. FDA-GRAS notice. Accessed January 30, 2020. Available from: https://www.accessdata.fda.gov/scripts/fdcc/?- set=GRASNotices.
APA GURER E, Aktas Z, SAVRAN OGUZ F, Oncul O (2021). Bağırsak Mikrobiyotası ve İmmünogenetik. , 573 - 583. 10.5578/flora.20219602
Chicago GURER EKIN ECE,Aktas Zerrin,SAVRAN OGUZ FATMA,Oncul Oral Bağırsak Mikrobiyotası ve İmmünogenetik. (2021): 573 - 583. 10.5578/flora.20219602
MLA GURER EKIN ECE,Aktas Zerrin,SAVRAN OGUZ FATMA,Oncul Oral Bağırsak Mikrobiyotası ve İmmünogenetik. , 2021, ss.573 - 583. 10.5578/flora.20219602
AMA GURER E,Aktas Z,SAVRAN OGUZ F,Oncul O Bağırsak Mikrobiyotası ve İmmünogenetik. . 2021; 573 - 583. 10.5578/flora.20219602
Vancouver GURER E,Aktas Z,SAVRAN OGUZ F,Oncul O Bağırsak Mikrobiyotası ve İmmünogenetik. . 2021; 573 - 583. 10.5578/flora.20219602
IEEE GURER E,Aktas Z,SAVRAN OGUZ F,Oncul O "Bağırsak Mikrobiyotası ve İmmünogenetik." , ss.573 - 583, 2021. 10.5578/flora.20219602
ISNAD GURER, EKIN ECE vd. "Bağırsak Mikrobiyotası ve İmmünogenetik". (2021), 573-583. https://doi.org/10.5578/flora.20219602
APA GURER E, Aktas Z, SAVRAN OGUZ F, Oncul O (2021). Bağırsak Mikrobiyotası ve İmmünogenetik. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 26(4), 573 - 583. 10.5578/flora.20219602
Chicago GURER EKIN ECE,Aktas Zerrin,SAVRAN OGUZ FATMA,Oncul Oral Bağırsak Mikrobiyotası ve İmmünogenetik. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi 26, no.4 (2021): 573 - 583. 10.5578/flora.20219602
MLA GURER EKIN ECE,Aktas Zerrin,SAVRAN OGUZ FATMA,Oncul Oral Bağırsak Mikrobiyotası ve İmmünogenetik. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, vol.26, no.4, 2021, ss.573 - 583. 10.5578/flora.20219602
AMA GURER E,Aktas Z,SAVRAN OGUZ F,Oncul O Bağırsak Mikrobiyotası ve İmmünogenetik. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi. 2021; 26(4): 573 - 583. 10.5578/flora.20219602
Vancouver GURER E,Aktas Z,SAVRAN OGUZ F,Oncul O Bağırsak Mikrobiyotası ve İmmünogenetik. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi. 2021; 26(4): 573 - 583. 10.5578/flora.20219602
IEEE GURER E,Aktas Z,SAVRAN OGUZ F,Oncul O "Bağırsak Mikrobiyotası ve İmmünogenetik." Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 26, ss.573 - 583, 2021. 10.5578/flora.20219602
ISNAD GURER, EKIN ECE vd. "Bağırsak Mikrobiyotası ve İmmünogenetik". Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi 26/4 (2021), 573-583. https://doi.org/10.5578/flora.20219602