Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram

Yıl: 2021 Cilt: 9 Sayı: 20 Sayfa Aralığı: 396 - 417 Metin Dili: Türkçe DOI: 10.7816/nesne-09-20-11 İndeks Tarihi: 19-05-2022

Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram

Öz:
Görsel sistem için bilgiyi zamana bağlı boyutta işlemek gerek süre aralıkları ve harekete dair etkin bir temsil oluşturabilmek, gerekse görsel olaylar arasında “A olayı B olayından önce gerçekleşmiştir” gibi zamansal bir sıralandırma yapabilmek açısından önemlidir. İnsan, zamansal bilgiyi mikrosaniyeden 24 saatlik biyolojik döngülere değin oldukça geniş bir zaman ölçeğinde işlemler. Zamansal işlemenin beyinde merkezi ya da dağınık bir sistem ile mi gerçekleştiği, farklı zaman ölçekleri için farklı mekanizmaların sorumlu olup olmadığı ve farklı modalitelerin, örneğin duyusal ve motor modaliteler için bu mekanizmaların farklılaşıp farklılaşmadığı zaman algısı alanının başlıca sorularıdır. Bu derlemenin hedefinde milisaniye ölçeği ve bu ölçeğin işlenmesinden sorumlu görsel zamansal mekanizmalar vardır. Zaman algısı literatüründe en kabul gören model, beyinde duyularüstü, merkezi bir saat olduğunu ve zaman algısında oluşan yanılsamaların, canlının uyarılmışlığında oluşan değişikliklerle açıklanabileceğini öne sürmektedir. Ancak Johnston ve arkadaşlarının (2006) başlatıp, bu derlemenin yazarlarından birinin de içinde bulunduğu araştırmalar silsilesi görsel alanın belli bir bölgesini hareket ya da titreşime adapte ederek yalnızca o bölgede algılanan zamanın değiştirilebileceğini ortaya koymuştur. Zaman, hareket ve uzam arasındaki bu ilişki beyinde zamanın duyulardan soyutlanmış merkezi bir sistemle değil, dalga boyu ya da hareket gibi uyaranın duyusal bir özelliğiymişçesine kodladığını göstermektedir.
Anahtar Kelime:

A Theory on The Vision based Mechanisms of Subjective Time Within The Context of The Neural and Psychological Models of Time Perception

Öz:
Temporal processing is crucial for interval, duration and motion discrimination, as well as the ability to order events. Humans process temporal information over a large scale ranging from microseconds to daily circadian rhythms. The basic questions in the time perception literature include whether timing is centralized or distributed in the brain and whether different time scales or modalities (such as sensory or motor) are processed by different neural mechanisms. In this review, focus will be on visual timing in the millisecond range and the underlying temporal mechanisms.The classical model of a supramodal centralised clock, in which scaling between real and apparent time is accomplished by a change in the arousal level, has been challenged by our evidence, following Johnston et al. (2006), that the apparent duration can be manipulated in a local region of visual field by adaptation to motion or flicker and that the effects of temporal frequency adaptation on perceived duration and perceived temporal frequency are dissociable. The relationship between time, motion and space supports the idea that time is an attribute of a visual stimulus like any other low level features such as color or motion, which we suggest may imply a time pathway in the brain.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Alexander, I., Thilo, K. V., Cowey, A. ve Walsh, V. (2005). Chronostasis without voluntary action. Experimental Brain Research, 161(1), 125-132.
  • Ayhan, I., Bruno, A., Nishida, S. Y. ve Johnston, A. (2009). The spatial tuning of adaptation-based time compression. Journal of Vision, 9(11), 2-2.
  • Ayhan, I., Bruno, A., Nishida, S. Y. ve Johnston, A. (2011). Effect of the luminance signal on adaptation- based time compression. Journal of Vision, 11(7), 22-22.
  • Ayhan, I. ve Canbeyli, R. (2018). Zaman, zaman algısı ve biyolojik saat. Biceroglu, H., Tonge, M., Seckin, M. Adiguzel, E., Gurvit, H. ve Hanci, M. (Eds.) Fonksiyonun Cerrahi Anatomisi kitabında, İstanbul: Us Akademi.
  • Ayhan, I. ve Ozbagci, D. (2020). Action-induced changes in the perceived temporal features of visual events. Vision Research, 175, 1-13.
  • Benardete, E. A. ve Kaplan, E. (1999). Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli. The Journal of Physiology, 519(Pt 3), 775.
  • Beudel, M., Galama, S., Leenders, K. L. ve de Jong, B. M. (2008). Time estimation in Parkinson's disease and degenerative cerebellar disease. Neuroreport, 19(10), 1055-1058.
  • Block, R. A. ve Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic review. Psychonomic Bulletin & Review, 4(2), 184-197.
  • Braddick, O. J., O'Brien, J. M., Wattam-Bell, J., Atkinson, J., Hartley, T. ve Turner, R. (2001). Brain areas sensitive to coherent visual motion. Perception, 30(1), 61-72.
  • Brown, S. W. (1995). Time, change, and motion: The effects of stimulus movement on temporal perception. Perception & Psychophysics, 57, 105-116.
  • Bruno, A., Ayhan, I. ve Johnston, A. (2010). Retinotopic adaptation-based visual duration compression. Journal of Vision, 10(10), 30-30.
  • Bruno, A., Ayhan, I. ve Johnston, A. (2011). Duration expansion at low luminance levels. Journal of Vision, 11(14), 13-13.
  • Bruno, A. ve Cicchini, G. M. (2016). Multiple channels of visual time perception. Current Opinion in Behavioral Sciences, 8, 131-139.
  • Bruno, A. ve Johnston, A. (2010). Influence of contrast gain changes on the apparent duration of a visual stimulus. PERCEPTION, 39(2), 269-269.
  • Bueti, D., Bahrami, B. ve Walsh, V. (2008). Sensory and association cortex in time perception. Journal of Cognitive Neuroscience, 20(6), 1054-1062.
  • Bueti, D., van Dongen, E. V. ve Walsh, V. (2008). The role of superior temporal cortex in auditory timing. PLoS ONE, 3(6), e2481.
  • Buhusi, C. V. ve Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755-765.
  • Buonomano, D. V. (2005). A learning rule for the emergence of stable dynamics and timing in recurrent networks. Journal of Neurophysiology, 94(4), 2275-2283.
  • Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3(10), 594-597.
  • Buonomano, D. V. ve Karmarkar, U. R. (2002). How do we tell time? Neuroscientist, 8(1), 42-51.
  • Buonomano, D. V. ve Merzenich, M. M. (1995). Temporal information transformed into a spatial code by a neural network with realistic properties. Science, 267(5200), 1028-1030.
  • Burr, D. C. ve Morrone, C. (1996). Temporal impulse response functions for luminance and colour during saccades. Vision Research, 36(14), 2069-2078.
  • Cheng, R. K., Tipples, J., Narayanan, N. S. ve Meck, W. H. (2016). Clock speed as a window into dopaminergic control of emotion and time perception. Timing & Time Perception, 4(1), 99-122.
  • Chiappe, M. E., Seelig, J. D., Reiser, M. B. ve Jayaraman, V. (2010). Walking modulates speed sensitivity in Drosophila motion vision. Current Biology, 20(16), 1470-1475.
  • Clifford, C. W., Ibbotson, M. R. ve Langley, K. (1997). An adaptive Reichardt detector model of motion adaptation in insects and mammals. Visual Neuroscience, 14, 741–749.
  • Coull, J. T., Vidal, F., Nazarian, B. ve Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303(5663), 1506-1508..
  • Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal of the Acoustical Society of America, 34(5), 582-593.
  • Cropper, S. J. (2001). Local and global motion signals and their interaction in space and time. In: Motion Vision (pp. 125-140). Springer, Berlin, Heidelberg.
  • Curran, W. ve Benton, C. P. (2012). The many directions of time. Cognition, 122(2), 252-257.
  • Derrington, A. M., Krauskopf, J. ve Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology, 357(1), 241-265.
  • De Valois, R. L., Abramov, I. ve Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. JOSA, 56(7), 966-977.
  • De Valois, R. L., Cottaris, N. P., Elfar, S. D., Mahon, L. E .ve Wilson, J. A. (2000). Some transformations of color information from lateral geniculate nucleus to striate cortex. Proceedings of the National Academy of Sciences, 97(9), 4997-5002.
  • Droit-Volet, S., Meck, W. H. ve Penney, T. B. (2007). Sensory modality and time perception in children and adults. Behavioural Processes, 74(2), 244-250.
  • Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A. ve Mortelmans, L. (1994). Many areas in the human brain respond to visual motion. Journal of Neurophysiology, 72(3), 1420-1424.
  • Eagleman, D. M. (2008). Human time perception and its illusions. Current Opinion in Neurobiology, 18(2), 131-136.
  • Eagleman, D. M. ve Pariyadath, V. (2009). Is subjective duration a signature of coding efficiency?. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1841-1851.
  • Fierro, B., Palermo, A., Puma, A., Francolini, M., Panetta, M. L., Daniele, O. ve Brighina, F. (2007). Role of the cerebellum in time perception: a TMS study in normal subjects. Journal of the Neurological Sciences, 263(1-2), 107-112.
  • Fiorillo, C. D., Tobler, P. N. ve Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898-1902.
  • Fortin, C. ve Rousseau, R. (1998). Interference from short-term memory processing on encoding and reproducing brief durations. Psychological Research, 61, 269–276.
  • Fraisse, P. (1984). Perception and estimation of time. Annual review of psychology, 35(1), 1-37.
  • Ghose, G. M. ve Maunsell, J. H. R. (2002). Attentional modulation in visual cortex depends on task timing. Nature, 419(6907), 616-620.
  • Gibbon, J. (1977). Scalar Expectancy-Theory and Weber’s Law in Animal Timing. Psychological Review, 84(3), 279-325.
  • Gibbon, J., Church, R. M. ve Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423(1), 52-77.
  • Gibbon, J., Malapani, C., Dale, C. L. ve Gallistel, C. R. (1997). Toward a neurobiology of temporal cognition: advances and challenges. Current Opinion in Neurobiology, 7(2), 170-184.
  • Golombek, D. A., Bussi, I. L. ve Agostino, P. V. (2014). Minutes, days and years: molecular interactions among different scales of biological timing. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1637), 20120465.
  • Grondin, S. ve Rousseau, R. (1991). Judging the relative duration of multimodal short empty time intervals. Perception & Psychophysics, 49(3), 245-256.
  • Gulhan, D. ve Ayhan, I. (2019). Short-term global motion adaptation induces a compression in the subjective duration of dynamic visual events. Journal of Vision, 19(5), 19-19.
  • Hagura, N., Kanai, R., Orgs, G. ve Haggard, P. (2012). Ready steady slow: action preparation slows the subjective passage of time. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4399-4406.
  • Harrington, D. L., Haaland, K. Y. ve Knight, R. T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18(3), 1085-1095.
  • Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z. ve Knight, R. T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127(3), 561-574.
  • Hicks, R. E. ve Allen, D. A. (1979). Counting eliminates the repetition effect in judgments of temporal duration. Acta Psychologica, 43(5), 361-366.
  • Hicks, R. E., Miller, G. W. ve Kinsbourne, M. (1976). Prospective and retrospective judgments of time as a function of amount of information processed. The American Journal of Psychology, 719-730.
  • Hinton, S. C., Meck, W. H. ve MacFall, J. R. (1996). Peak-interval timing in humans activates frontal- striatal loops. NeuroImage, 3(3), S224.
  • Hodinott-Hill, I., Thilo, K. V., Cowey, A. ve Walsh, V. (2002). Auditory chronostasis: hanging on the telephone. Current Biology, 12(20), 1779-1781.
  • Hubel, D. H. ve Wiesel, T. N. (1959). Receptive Fields of Single Neurones in the Cats Striate Cortex. Journal of Physiology-London, 148(3), 574-591.
  • Hubel, D. H. ve Wiesel, T. N. (1966). Effects of varying stimulus size and color on single lateral geniculate cells in Rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 55(6), 1345-1346.
  • Ibbotson, M. R. (2005). Contrast and temporal frequency-related adaptation in the pretectal nucleus of the optic tract. Journal of Neurophysiology, 94(1), 136-146.
  • Ibbotson, M. R., Clifford, C. W. ve Mark, R. F. (1998). Adaptation to visual motion in directional neurons of the nucleus of the optic tract. Journal of Neurophysiology, 79(3), 1481-1493
  • Ibbotson, M. R., Crowder, N. A., Cloherty, S. L., Price, N. S. ve Mustari, M. J. (2008). Saccadic modulation of neural responses: possible roles in saccadic suppression, enhancement, and time compression. Journal of Neuroscience, 28(43), 10952-10960.
  • Irvin, G. E., Casagrande, V. A. ve Norton, T. T. (1993). Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Visual neuroscience, 10(2), 363-373.
  • Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6(6), 851-857.
  • Ivry, R. B. ve Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1(2), 136-152.
  • Ivry R.B. ve Spencer, R.M. (2004) The neural representation of time. Current Opinion in Neurobiology 14: 225–232.
  • Janssen, P. ve Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nature Neuroscience, 8(2), 234-241.
  • Jantzen, K. J., Steinberg, F. L. ve Kelso, J. A. (2005). Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage, 25(4), 1031-1042.
  • Johnston A. (2010). Modulation of time perception by visual adaptation. Nobre A. C. Coull J. T. (Eds.), Attention and Time (chap. 14, 187–200) kitabında. Oxford, UK: OUP.
  • Johnston, A., Arnold, D. H. ve Nishida, S. (2006). Spatially localized distortions of event time. Current Biology, 16(5), 472-479.
  • Jones, C. R., Rosenkranz, K., Rothwell, J. C. ve Jahanshahi, M. (2004). The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Experimental Brain Research, 158(3), 366-372.
  • Joris, P. ve Yin, T. C. (2007). A matter of time: internal delays in binaural processing. Trends in Neuroscience, 30(2), 70-78.
  • Jung, S. N., Borst, A. ve Haag, J. (2011). Flight activity alters velocity tuning of fly motion-sensitive neurons. Journal of Neuroscience, 31(25), 9231-9237.
  • Kagerer, F. A., Wittmann, M., Szelag, E. ve Steinbüchel, N. V. (2002). Cortical involvement in temporal reproduction: evidence for differential roles of the hemispheres. Neuropsychologia, 40(3), 357-366.
  • Kanai, R., Paffen, C. L., Hogendoorn, H. ve Verstraten, F. A. (2006). Time dilation in dynamic visual display. Journal of Vision, 6(12), 8-8.
  • Kaneko, S. ve Murakami, I. (2009). Perceived duration of visual motion increases with speed. Journal of Vision, 9(7), 14.
  • Kaplan, E. ve Benardete, E. (2001). The dynamics of primate retinal ganglion cells. In: Progress in Brain Research (Vol. 134, pp. 17-34). Elsevier.
  • Karmarkar, U. R. ve Buonomano, D. V. (2007). Timing in the absence of clocks: encoding time in neural network states. Neuron, 53(3), 427-438.
  • Koch, G., Oliveri, M., Torriero, S. ve Caltagirone, C. (2003). Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology, 60(11), 1844-1846.
  • Koch, G., Oliveri, M., Torriero, S., Salerno, S., Gerfo, E. L. ve Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179(2), 291- 299.
  • Kohn, A.ve Movhson, J. A. (2003). Neural adaptation to visual motion in area MT of the macaque. Neuron, 39, 681-691
  • Lejeune, H., Maquet, P., Bonnet, M., Casini, L., Ferrara, A., Macar, F., Pouthas V., Timsit-Berthler M. ve
  • Vidal, F. (1997). The basic pattern of activation in motor and sensory temporal tasks: positron emission tomography data. Neuroscience Letters, 235(1-2), 21-24.
  • Lebedev, M. A. ve Wise, S. P. (2000). Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys. Experimental Brain Research, 130(2), 195-215.
  • Lee, K. H., Egleston, P. N., Brown, W. H., Gregory, A. N., Barker, A. T. ve Woodruff, P. W. (2007). The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 19(1), 147-157.
  • Leon, M. I. ve Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38(2), 317-327.
  • Lewis, P. A. ve Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol, 13(2), 250-255.
  • Lewis, P. A. ve Miall, R. C. (2006). Remembering the time: a continuous clock. Trends in Cognitive Sciences, 10(9), 401-406.
  • Linden, D. E., Prvulovic, D., Formisano, E., Völlinger, M., Zanella, F. E., Goebel, R. ve Dierks, T. (1999). The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cerebral Cortex, 9(8), 815-823.
  • Livingstone, M. S. ve Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7(11), 3416-3468.
  • Macar, F., Coull, J. ve Vidal, F. (2006). The supplementary motor area in motor and perceptual time processing: fMRI studies. Cognitive Processing, 7(2), 89-94.
  • Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F. ve Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142(4), 475-485.
  • MacDonald, C. J. ve Meck, W. H. (2005). Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology, 182(2), 232-244.
  • Maimon, G., Straw, A. D. ve Dickinson, M. H. (2010). Active flight increases the gain of visual motion processing in Drosophila. Nature Neuroscience, 13(3), 393-399.
  • Malapani, C., Rakitin, B., Levy, R., Meck, W. H., Deweer, B., Dubois, B. ve Gibbon, J. (1998). Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10(3), 316-331.
  • Mante, V., Bonin, V. ve Carandini, M. (2008). Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron, 58(4), 625-638.
  • Marinho, V., Oliveira, T., Rocha, K., Ribeiro, J., Magalhães, F., Bento, T., ... ve Orsini, M. (2018). The dopaminergic system dynamic in the time perception: a review of the evidence. International Journal of Neuroscience, 128(3), 262-282.
  • Martin, P. R., White, A. J., Goodchild, A. K., Wilder, H. D. ve Sefton, A. E. (1997). Evidence that blue‐on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience, 9(7), 1536-1541.
  • Mauk, M. D. ve Buonomano, D. V. (2004). The neural basis of temporal processing. Annu. Rev. Neurosci., 27, 307-340.
  • Matell, M. S. ve Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139-170.
  • Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(2), 171.
  • Miall, C. (1989). The storage of time intervals using oscillating neurons. Neural Computation, 1(3), 359- 371.
  • Morrone, M. C., Ross, J. ve Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8(7), 950-954.
  • Nani, A., Manuello, J., Liloia, D., Duca, S., Costa, T. ve Cauda, F. (2019). The neural correlates of time: a meta-analysis of neuroimaging studies. Journal of Cognitive Neuroscience, 31(12), 1796-1826.
  • Nishida, S. ve Johnston, A. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Current Biology, 12(5), 359-368. 46(15), 2456-2464.
  • Pariyadath, V. ve Eagleman, D. (2007). The effect of predictability on subjective duration. PloS ONE, 2(11), e1264.
  • Pearce, J. M.ve Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532.
  • Penney, T. B., Gibbon, J. ve Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1770.
  • Petter, E. A., Lusk, N. A., Hesslow, G. ve Meck, W. H. (2016). Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neuroscience & Biobehavioral Reviews, 71, 739-755.
  • Phillips, D. P. (2008). A perceptual architecture for sound lateralization in man. Hearing Research, 238(1-2), 124-132.
  • Priebe, N. J. ve Lisberger, S. G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT. II. Tuning of neural circuit mechanisms. Journal of Neurophysiology, 88(1), 370- 382.
  • Rammsayer, T. H. (1999). Neuropharmacological evidence for different timing mechanisms in humans. The Quarterly Journal of Experimental Psychology: Section B, 52(3), 273-286.
  • Rammsayer, T. H. ve Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50(6), 565-574.
  • Rao, S. M., Mayer, A. R. ve Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4(3), 317-323.
  • Reppas, J. B., Usrey, W. M. ve Reid, R. C. (2002). Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron, 35(5), 961-974.
  • Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R. ve Kahana, M. J. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences, 100(13), 7931-7936.
  • Rose, D., ve Summers, J. (1995). Duration Illusions in a Train of Visual-Stimuli. Perception, 24(10), 1177- 1187.
  • Rousseau, R., Poirier, J. ve Lemyre, L. (1983). Duration discrimination of empty time intervals marked by intermodal pulses. Perception & Psychophysics, 34(6), 541-548.
  • Schlerf, J. E., Spencer, R. M. C., Zelaznik, H. N. ve Ivry, R. B. (2007). Timing of rhythmic movements in patients with cerebellar degeneration. The Cerebellum, 6(3), 221-231.
  • Shapley, R. M. ve Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. The Journal of Physiology, 285(1), 275-298.
  • Soares, S., Atallah, B. V. ve Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science, 354(6317), 1273-1277.
  • Surwillo, W. W. (1966). Time perception and the ‘internal clock’: Some observations on the role of the electroencephalogram. Brain Research, 2(4), 390-392.
  • van Wassenhove, V., Buonomano, D. V., Shimojo, S. ve Shams, L. (2008). Distortions of subjective time perception within and across senses. PLoS ONE, 3, e1437.
  • Wearden, J. H., Edwards, H., Fakhri, M. ve Percival, A. (1998). Why''sounds are judged longer than lights'': Application of a model of the internal clock in humans. The Quarterly Journal of Experimental Psychology: Section B, 51(2), 97-120.
  • Wearden, J. H., Denovan, L. ve Haworth, R. (1997). Scalar timing in temporal generalization in humans with longer stimulus durations. Journal of Experimental Psychology: Animal Behavior Processes, 23(4), 502.
  • Wearden, J. H. ve Penton-Voak, I. S. (1995). Feeling the heat: Body temperature and the rate of subjective time, revisited. The Quarterly Journal of Experimental Psychology Section B, 48(2b), 129-141.
  • Terao, M., Watanabe, J., Yagi, A. ve Nishida, S. (2008). Reduction of stimulus visibility compresses apparent time intervals. Nature Neuroscience, 11(5), 541-542.
  • Tomassini, A., Vercillo, T., Torricelli, F. ve Morrone, M. C. (2018). Rhythmic motor behaviour influences perception of visual time. Proceedings of the Royal Society B, 285(1888), 20181597.
  • Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the" internal clock". Psychological Monographs: General and Applied, 77(13), 1.
  • Treisman, M. (1984). Temporal rhythms and cerebral rhythms. Annals of the New York Academy of Sciences, 423, 542.
  • Treisman, M., Faulkner, A., Naish, P. L. ve Brogan, D. (1990). The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception, 19(6), 705-742.
  • Treisman, M., Cook, N., Naish, P. L. ve MacCrone, J. K. (1994). The internal clock: electroencephalographic evidence for oscillatory processes underlying time perception. The Quarterly Journal of Experimental Psychology Section A, 47(2), 241-289.
  • Tse, P. U., Intriligator, J., Rivest, J. ve Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66(7), 1171-1189.
  • Ulbrich, P., Churan, J., Fink, M. ve Wittmann, M. (2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica, 125(1), 51-65.
  • Ulrich, R., Nitschke, J.ve Rammsayer, T. (2006a). Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker-counter model. Perception & Psychophysics, 68(7), 1140-1152.
  • Ulrich, R., Nitschke, J. ve Rammsayer, T. (2006b). Perceived duration of expected and unexpected stimuli. Psychological Research, 70(2), 77-87.
  • Umeno, M. M. ve Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. Journal of Neurophysiology, 78(3), 1373-1383.
  • Walker, M. F., Fitzgibbon, E. J. ve Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology, 73(5), 1988-2003.
  • Walker, J. T. ve Scott, K. J. (1981). Auditory–visual conflicts in the perceived duration of lights, tones, and gaps. Journal of Experimental Psychology: Human Perception and Performance, 7(6), 1327.
  • Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C. ve Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE, 3(3), e1716.
  • Xuan, B., Zhang, D., He, S. ve Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 2-2.
  • Yarrow, K., Haggard, P., Heal, R., Brown, P. ve Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414(6861), 302-305.
  • Yarrow, K., Haggard, P. ve Rothwell, J. C. (2004). Action, arousal, and subjective time. Consciousness and Cognition, 13(2), 373-390.
  • Zakay, D. (1993). Relative and absolute duration judgments under prospective and retrospective paradigms. Perception & Psychophysics, 54, 656–664.
  • Zakay, D. ve Block, R. A. (1995). An attentional-gate model of prospective time estimation. Time and The Dynamic Control of Behavior, 167, 178.
  • Zakay, D. ve Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6(1), 12–16.
  • Zakay, D. ve Block, R. A. (2004). Prospective and retrospective duration judgments: an executive-control perspective. Acta Neurobiologiae Experimentalis, 64(3), 319-328.
APA ALAŞHAN D, Ayhan İ (2021). Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. , 396 - 417. 10.7816/nesne-09-20-11
Chicago ALAŞHAN DİDEM,Ayhan İnci Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. (2021): 396 - 417. 10.7816/nesne-09-20-11
MLA ALAŞHAN DİDEM,Ayhan İnci Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. , 2021, ss.396 - 417. 10.7816/nesne-09-20-11
AMA ALAŞHAN D,Ayhan İ Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. . 2021; 396 - 417. 10.7816/nesne-09-20-11
Vancouver ALAŞHAN D,Ayhan İ Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. . 2021; 396 - 417. 10.7816/nesne-09-20-11
IEEE ALAŞHAN D,Ayhan İ "Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram." , ss.396 - 417, 2021. 10.7816/nesne-09-20-11
ISNAD ALAŞHAN, DİDEM - Ayhan, İnci. "Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram". (2021), 396-417. https://doi.org/10.7816/nesne-09-20-11
APA ALAŞHAN D, Ayhan İ (2021). Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. Nesne Dergisi, 9(20), 396 - 417. 10.7816/nesne-09-20-11
Chicago ALAŞHAN DİDEM,Ayhan İnci Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. Nesne Dergisi 9, no.20 (2021): 396 - 417. 10.7816/nesne-09-20-11
MLA ALAŞHAN DİDEM,Ayhan İnci Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. Nesne Dergisi, vol.9, no.20, 2021, ss.396 - 417. 10.7816/nesne-09-20-11
AMA ALAŞHAN D,Ayhan İ Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. Nesne Dergisi. 2021; 9(20): 396 - 417. 10.7816/nesne-09-20-11
Vancouver ALAŞHAN D,Ayhan İ Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram. Nesne Dergisi. 2021; 9(20): 396 - 417. 10.7816/nesne-09-20-11
IEEE ALAŞHAN D,Ayhan İ "Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram." Nesne Dergisi, 9, ss.396 - 417, 2021. 10.7816/nesne-09-20-11
ISNAD ALAŞHAN, DİDEM - Ayhan, İnci. "Zaman Algısının Nöral ve Psikolojik Modelleri Bağlamında Öznel Zamanın Görsel Mekanizmalarına Dair Bir Kuram". Nesne Dergisi 9/20 (2021), 396-417. https://doi.org/10.7816/nesne-09-20-11