Yıl: 2022 Cilt: 61 Sayı: 1 Sayfa Aralığı: 31 - 40 Metin Dili: İngilizce DOI: 10.30797/madencilik.967090 İndeks Tarihi: 20-05-2022

Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill

Öz:
To enhance the strength and stability of cemented paste backfill (CPB), many alkaline materials are utilised as replacement or additive to binder or tailings in CPB. However, the effect of these materials on groundwater pollution of CPB needs to be comprehensively investigated. In this study, effects of the utilization of calcitic and dolomitic limestone (CL and DL) as replacement (10 wt.%) to sulphide mine tailings (S-MT) in CPB mixture on the long-term environmental behaviour of CPB were investigated. For this purpose, CPB samples (CPBs) were subjected to dynamic tank leaching tests over 360-days and the analyses of pH, sulphate (SO4 2-) and heavy metals (HMs) on the leachates were carried out. The effects of mineralogy and microstructure on the environmental behavior of CPBs were also examined by X-ray diffractometry and porosity tests. The findings showed that with the utilization of CL and DL, the pH of leachates remained at alkaline levels and the release of SO4 2- was significantly reduced. Furthermore, the denser microstructure in CPBs of CL and DL contributed to be prevented or be remarkably reduced the HMs-releases (except Cu, Mo and Pb). The results reveal that the mechanical properties of CPB as well as its impact on the groundwater pollution should be carefully evaluated.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • ASTM C1308-08, 2017. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM D 4404-18, 2018. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Bull, A.J., Fall, M. 2020. Thermally induced changes in metalloid leachability of cemented paste backfill that contains blast furnace slag. Minerals Engineering. 156, 106520. https://doi.org/10.1016/j.mineng. 2020.106520
  • Cao, S., Xue, G., Yilmaz, E., Yin, Z., Yan, F. 2021. Utilizing concrete pillars as an environmental mining practice in underground mines. Journal of Cleaner Production. 278, 123433. https://doi.org/10.1016/j.jclepro. 2020.123433
  • Chen, Q., Zhang, L., Ke, Y., Hills, C., Kang, Y. 2009. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/ stabilized electroplating sludge. Chemosphere. 74(6), 758-764. https://doi.org/10.1016/j.chemosphere.2008.10.044
  • Cihangir, F., Akyol, Y. 2018. Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag. International Journal of Mining, Reclamation and Environment. 32(2), 123-143. https://doi.org/10.1080/17480 930.2016.1242183
  • Coussy, S., Benzaazoua, M., Blanc, D., Moszkowicz, P., Bussière, B. 2011. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment. Journal of Hazardous Materials. 185(2- 3), 1467-1476. https://doi.org/10.1016/j.jhazmat.2010.10.070
  • Dayioglu, A.Y., Aydilek, A.H., Cimen, O., Cimen, M. 2018. Trace metal leaching from steel slag used in structural fills. Journal of Geotechnical and Geoenvironmental Engineering. 144(12), 04018089. https:// doi.org/10.1061/(ASCE)GT.1943-5606.0001980
  • Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. 2017 Practical importance of tailings for cemented paste backfill. Yilmaz, E. and Fall, M. (Eds). Paste Tailings Management, Springer International Publishing. Cham, 7-32. https://doi.org/10.1007/978-3-319-39682-8
  • Erçıkdı, B., Yılmaz, T. 2019. Çimentolu macun dolgunun dayanım ve mikroyapı özellikleri; C-sınıfı uçucu külün etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 21 (61), 15-23. DOI:10.21205/deufmd.2019216102
  • European Commission, 2018. Best available techniques (BAT) reference document for the management of waste from extractive industries, pp. 195.
  • Fall, M., Adrien, D., Célestin, J.C., Pokharel, M., Touré, M. 2009. Saturated hydraulic conductivity of cemented paste backfill. Minerals Engineering. 22 (15), 1307-1317. https://doi.org/10.1016/j.mineng.2009.08.002
  • Gwenzi, W., Mupatsi, N.M. 2016. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris. Waste Management. 49, 114-123. https://doi.org/10.1016/j.wasman. 2015.12.029
  • Hakkou, R., Benzaazoua, M., Bussiere, B. 2008. Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water and the Environment. 27 (3), 160-170. https:// doi.org/10.1007/s10230-008-0035-7
  • Hamberg, R., Maurice, C., Alakangas, L. 2015. The use of low binder proportions in cemented paste backfill–effects on As-leaching. Minerals Engineering. 78, 74-82. https://doi.org/10.1016/j.mineng.2015.04.017
  • Hamberg, R., Maurice, C., Alakangas, L. 2017. Lowering the water saturation level in cemented paste backfill mixtures–effect on the release of arsenic. Minerals Engineering. 112, 84-91. https://doi.org/10.1016/j. mineng.2017.05.005
  • Hamberg, R., Maurice, C., Alakangas, L. 2018. The formation of unsaturated zones within cemented paste backfill mixtures—effects on the release of copper, nickel, and zinc. Environmental Science and Pollution Research. 25 (21), 20809-20822. https://doi.org/10.1007/s11356- 018-2222-9
  • Jiang, H., Fall, M., Yilmaz, E., Yang, L., Ren, L. 2020. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technology. 372, 258-266. https://doi.org/10.1016/j.powtec.2020.06.009
  • Jiao, H. Z., Wu, A.X., Wang, H.J., Yang, S.K., Li, R., Xiao, Y.T. 2011. The influence of cemented paste backfill on groundwater quality. Procedia Earth and Planetary Science. 2, 183-188. https://doi.org/10.1016/j. proeps.2011.09.030
  • Jones, S.N., Cetin, B. 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel. 188, 294-309. https://doi.org/10.1016/j. fuel.2016.10.018
  • Koohestani, B., Darban, A.K., Mokhtari, P., Darezereshki, E., Yilmaz, E., Yilmaz, E. 2020. Influence of hydrofluoric acid leaching and roasting on mineralogical phase transformation of pyrite in sulfidic mine tailings. Minerals. 10(6), 513. https://doi.org/10.3390/min10060513
  • Liu, H., Zhang, J., Li, B., Zhou, N., Xiao, X., Li, M., Zhu, C. 2020. Environmental behavior of construction and demolition waste as recycled aggregates for backfilling in mines: leaching toxicity and surface subsidence studies. Journal of Hazardous Materials. 389, 121870. https://doi. org/10.1016/j.jhazmat.2019.121870
  • MEND, 2006. MEND Report 10.2 – Paste backfill geochemistry – Environmental effects of leaching and weathering, Mine Environment Neutral Drainage (MEND) Program, April 2006, Canada.
  • Pokharel, M., Fall, M. 2013. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cement and Concrete Composites. 38, 21-28. https:// doi.org/10.1016/j.cemconcomp.2013.03.015
  • Potgieter-Vermaak, S.S., Potgieter, J.H., Monama, P., Van Grieken, R. 2006. Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Minerals Engineering. 19(5), 454-462. https://doi.org/10.1016/j.mineng.2005.07.009
  • Salzsauler, K.A., Sidenko, N.V., Sherriff, B.L. 2005. Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry. 20 (12), 2303- 2314. https://doi.org/10.1016/j.apgeochem.2005.06.007
  • Schafer, W. 2016. Geochemical evaluation of cemented paste tailings in a flooded underground mine. Annual Meeting of the International-Mine- Water-Association (IMWA), July, Germany, 11-15.
  • Seipel, K.S., Sheumaker, D.L., Kirk, L.B. 2017. Kinetic tests of non-amended and cemented paste tailings geochemistry in subaqueous and subaerial settings. 13th International Mine Water Association Congress, June, Lappeenranta, 830-835.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils, EPA- 600/2-78-054, Cincinnati, Ohio: U.S. Environmental Protection Agency, p. 203.
  • Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V., Filip, J., Vaněk, A., Penížek, V., Ettler, V., Mapani, B. 2014. Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environmental Monitoring and Assessment. 186 (8), 4891-4903. https://doi. org/10.1007/s10661-014-3746-1
  • Taha, Y., Benarchid, Y., Benzaazoua, M. 2019. Environmental behavior of waste rocks based concrete: Leaching performance assessment. Resources Policy. 101419. https://doi.org/10.1016/j.resourpol. 2019.101419
  • US-EPA 1315-1, 2013. Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure. Test methods for evaluating solid waste, physical/chemical methods. Office of Wastewater Management, Washington DC. WHO (World Health Organization), 2011. Guidelines for drinking water quality. WHO Chron 4,104.
  • Yan, B., Yilmaz, E. 2020. Analytical solution for stress distribution in cementitious backfills considering stope inclinations. Recep Tayyip Erdogan University Journal of Science and Engineering,1 (2), 26-33.
  • Yang, Y., Zhao, T., Jiao, H., Wang, Y., Li, H. 2020. Potential effect of porosity evolution of cemented paste backfill on selective solidification of heavy metal ions. International Journal of Environmental Research and Public Health. 17 (3), 814. https://doi.org/10.3390/ijerph17030814
  • Yılmaz, T., Ercikdi, B., Deveci, H. 2018. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. Journal of Environmental Management. 222, 250- 259. https://doi.org/10.1016/j.jenvman.2018.05.075
  • Yılmaz, T., Ercikdi, B., Cihangir, F. 2020. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide- rich environment of cemented paste backfill. Journal of Environmental Management. 258, 110037. https://doi.org/10.1016/j.jenvman. 2019.110037
  • Yılmaz, T., Ercikdi, B., Deveci, H. 2021. Evaluation of geochemical behaviour of flooded cemented paste backfill of sulphide-rich tailings by dynamic- tank leaching test. International Journal of Mining, Reclamation and Environment. 35(5), 336-355. https://doi.org/10.1080/174809 30.2020.1829778
  • Yılmaz, T., Ercikdi, B. 2021. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology. 1-14. https://doi.org/10.1007/s13762-021-03359-2
  • Yilmaz, E., Fall, M. 2017 Introduction to paste tailings management. Yilmaz, E. Fall, M. (Eds). Paste Tailings Management. Springer International Publishing. Cham, 1-5. https://doi.org/10.1007/978-3-319-39682-8
  • Yilmaz, E., Yilmaz, E. 2018. Sustainability and tailings management in the mining industry: paste technology. Mugla Journal of Science and Technology, 4 (1), 16-26. https://doi.org/10.22531/muglajsci.383095
  • Yumlu, M. 2001. Backfill Practices at Cayeli Mine. Proceedings of the International Mining Conference, 19-22 June, Ankara, Turkey, 333–339.
  • Yumlu, M. 2020. The general framework and international applications regarding the paste backfill method. Workshop on the evaluation of paste backfill support system in terms of technical, environmental and legislation, Turkey Miner Association, 26 August, Ankara, Turkey (In Turkish).
  • Zheng, J., Zhu, Y., Zhao, Z. 2016. Utilization of limestone powder and water- reducing admixture in cemented paste backfill of coarse copper mine tailings. Construction and Building Materials. 124, 31-36. https:// doi.org/10.1016/j.conbuildmat.2016.07.055
APA YILMAZ T, ERCİKDİ B (2022). Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. , 31 - 40. 10.30797/madencilik.967090
Chicago YILMAZ TEKIN,ERCİKDİ BAYRAM Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. (2022): 31 - 40. 10.30797/madencilik.967090
MLA YILMAZ TEKIN,ERCİKDİ BAYRAM Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. , 2022, ss.31 - 40. 10.30797/madencilik.967090
AMA YILMAZ T,ERCİKDİ B Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. . 2022; 31 - 40. 10.30797/madencilik.967090
Vancouver YILMAZ T,ERCİKDİ B Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. . 2022; 31 - 40. 10.30797/madencilik.967090
IEEE YILMAZ T,ERCİKDİ B "Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill." , ss.31 - 40, 2022. 10.30797/madencilik.967090
ISNAD YILMAZ, TEKIN - ERCİKDİ, BAYRAM. "Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill". (2022), 31-40. https://doi.org/10.30797/madencilik.967090
APA YILMAZ T, ERCİKDİ B (2022). Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. Bilimsel Madencilik Dergisi, 61(1), 31 - 40. 10.30797/madencilik.967090
Chicago YILMAZ TEKIN,ERCİKDİ BAYRAM Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. Bilimsel Madencilik Dergisi 61, no.1 (2022): 31 - 40. 10.30797/madencilik.967090
MLA YILMAZ TEKIN,ERCİKDİ BAYRAM Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. Bilimsel Madencilik Dergisi, vol.61, no.1, 2022, ss.31 - 40. 10.30797/madencilik.967090
AMA YILMAZ T,ERCİKDİ B Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. Bilimsel Madencilik Dergisi. 2022; 61(1): 31 - 40. 10.30797/madencilik.967090
Vancouver YILMAZ T,ERCİKDİ B Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill. Bilimsel Madencilik Dergisi. 2022; 61(1): 31 - 40. 10.30797/madencilik.967090
IEEE YILMAZ T,ERCİKDİ B "Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill." Bilimsel Madencilik Dergisi, 61, ss.31 - 40, 2022. 10.30797/madencilik.967090
ISNAD YILMAZ, TEKIN - ERCİKDİ, BAYRAM. "Effect of calcitic and dolomitic limestones on environmental behavior of cemented paste backfill". Bilimsel Madencilik Dergisi 61/1 (2022), 31-40. https://doi.org/10.30797/madencilik.967090