Yıl: 2021 Cilt: 46 Sayı: 5 Sayfa Aralığı: 549 - 555 Metin Dili: İngilizce DOI: https://doi.org/10.1515/tjb-2020-0508 İndeks Tarihi: 20-05-2022

The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression

Öz:
Objectives: Breast cancer is the second cause of death among women worldwide. In the last decades, the immunotherapy-based approaches have a growing importance in the treatment of breast cancer. Several stu- dies have indicated the pleiotrophic effect of Interleukin-6 (IL-6) via targeting the membrane-bound or soluble receptors. Materials and methods: Different concentrations of IL-6 were incubated for 24, 48, and 72 h in the breast carcinoma cell line (MCF-7). Cell proliferation, apoptotic cell popula- tion, gene expression by RT-PCR were measured, and the effect of IL-6 treatment on cell morphology was observed. Results: In the present study, IL-6 treatment of MCF-7 cells inhibited cell proliferation in a dose and time dependent manner. The IL-6 treatment was found most effective on 24 h. The viable cell amount was decreased to 70.07 ± 4.85% at 100 nM treatment with a significant alteration on cell morphology, simultaneously in the 24 h of treatment. IL-6 treatment has also increased the early apoptotic cell population % in MCF-7 cells significantly (p<0.0001). The RT-PCR analyses have shown that the apoptotic effect of IL-6 was related to the decrease at MMP-2/-9 mRNA levels (p<0.0001). Conclusions: In conclusion, IL-6 treatment may inhibit cell proliferation and induce apoptosis of MCF-7 cells in a dose- dependent manner through down-regulation of MMP-2/-9.
Anahtar Kelime:

nterlökin-6’nın MMP-2/-9 mRNA Ekspresyonunun Downregülasyonu Yoluyla MCF-7 Hücrelerinin Apoptozisi Üzerindeki Etkisi

Öz:
Amaç: Meme kanseri, dünya çapında kadınlar arasında ikinci ölüm nedenidir. Son yıllarda, meme kanserinin tedavisinde immünoterapi temelli yaklaşımların önemi giderek artmaktadır. Çeşitli çalışmalar, interlökin-6’nın (IL-6), membrana bağlı veya çözünebilir reseptörleri hedef alarak pleiotropik etki gösterdiğini belirtmiştir. Gereç ve Yöntem: Farklı konsantrasyonlarda IL-6 (10, 25, 50, ve 100 nM) meme kanseri hücre hattında (MCF-7) 24, 48 ve 72 saat inkübe edilmiştir. İnkübasyondan sonra hücre proliferasyonu, apoptotik hücre popülasyonu, RT-PCR ile gen ekspresyonu ölçülmüş ve IL-6 tedavisinin hücre mor- folojisine etkisi gözlemlenmiştir. Sonuç: Mevcut çalışmada, MCF-7 hücrelerinde IL-6 teda- visi, hücre proliferasyonunu doza ve zamana bağımlı bir şekilde inhibe etmiştir. 24 saat inkübasyon sonrasında 100 nM IL-6 tedavisi ile canlı hücre miktarı %70.07 ± 4.85’e kadar azalmış, aynı zamanda hücre morfolojisinde anlamlı şekilde değişiklik gözlenmiştir. IL-6 tedavisi ayrıca MCF-7 hücrelerinde erken apoptotik hücre popülasyonu yüzde- sini önemli ölçüde artırmıştır (p<0.0001). RT-PCR ana- lizleri, IL-6’nın apoptotik etkisinin MMP-2/-9 mRNA seviyelerindeki düşüşle ilişkili olduğunu göstermiştir (p<0.0001)Tartışma: Sonuç olarak IL-6 tedavisi, MMP-2/-9’un downregülasyonu yoluyla doza bağımlı bir şekilde hücre proliferasyonunu inhibe edebilmekte ve MCF-7 meme karsinom hücrelerinin apoptozunu indükleyebilmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Waldmann TA. Immunotherapy: past, present and future. Nat Med 2003;9:269–77.
  • 2. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016;13:394.
  • 3. Chen DS, Mellman I. Oncology meets immunology: the cancer- immunity cycle. Immunity 2013;39:1–10.
  • 4. Garcia-Aranda M, Redondo M. Immunotherapy: a challenge of breast cancer treatment. Cancers 2019;11. https://doi.org/10. 3390/cancers11121822.
  • 5. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016;14:73.
  • 6. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015;348:62–8.
  • 7. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Canc 2016;16: 566–81.
  • 8. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016;8:328rv4. 9. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015;348:56–61.
  • 10. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Canc Res 2011;17:4550–7.
  • 11. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Canc Res 2015;21:687–92.
  • 12. Ohno Y, Toyoshima Y, Yurino H, Monma N, Xiang H, Sumida K, et al. Lack of interleukin-6 in the tumor microenvironment augments type-1 immunity and increases the efficacy of cancer immunotherapy. Canc Sci 2017;108:1959–66.
  • 13. Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, et al. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 2018;108:1415–24.
  • 14. Chan LC, Li CW, Xia W, Hsu JM, Lee HH, Cha JH, et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest 2019;129:3324–38.
  • 15. Chen Q, Xu B, Lan L, Yang D, Yang M, Jiang J, et al. High mRNA expression level of IL-6R was associated with better prognosis for patients with ovarian cancer: a pooled meta-analysis. Sci Rep 2017;7:8769.
  • 16. Girard JP, Moussion C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 2012;12:762–73.
  • 17. Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal 2013;25:961–9. 18. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010;40:1830–5.
  • 19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
  • 20. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor- promoting chronic inflammation: a magic bullet? Science 2013; 339:286–91.
  • 21. Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol 2014;26:38–47.
  • 22. Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors. Bioorg Med Chem 2020;28:115327.
  • 23. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR, et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 2005;4:217–20.
  • 24. Chonov DC, Ignatova MMK, Ananiev JR, Gulubova MV. IL-6 activities in the tumour microenvironment. Part 1. Open Access Maced J Med Sci 2019;7:2391–8.
  • 25. Lacreusette A, Nguyen JM, Pandolfino MC, Khammari A, Dreno B, Jacques Y, et al. Loss of oncostatin M receptor beta in metastatic melanoma cells. Oncogene 2007;26:881–92.
  • 26. Yoshimoto T, Morishima N, Mizoguchi I, Shimizu M, Nagai H, Oniki S, et al. Antiproliferative activity of IL-27 on melanoma. J Immunol 2008;180:6527–35.
  • 27. Grant SL, Begley CG. The oncostatin M signalling pathway: reversing the neoplastic phenotype? Mol Med Today 1999;5: 406–12.
  • 28. Chipoy C, Berreur M, Couillaud S, Pradal G, Vallette F, Colombeix C, et al. Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCdelta and STAT3. J Bone Miner Res 2004;19:1850–61.
  • 29. Kortylewski M, Heinrich PC, Mackiewicz A, Schniertshauer U, Klingmuller U, Nakajima K, et al. Interleukin-6 and oncostatin M-induced growth inhibition of human A375 melanoma cells is STAT-dependent and involves upregulation of the cyclin- dependent kinase inhibitor p27/Kip1. Oncogene 1999;18: 3742–53
  • 30. Jackson HW, Defamie V, Waterhouse P, Khokha R. TIMPs: versatile extracellular regulators in cancer. Nat Rev Canc 2017;17:38–53.
  • 31. Chiu JJ, Sgagias MK, Cowan KH. Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Canc Res 1996;2:215–21.
  • 32. Wang Q, Horiatis D, Pinski J. Interleukin-6 inhibits the growth of prostate cancer xenografts in mice by the process of neuroendocrine differentiation. Int J Canc 2004;111:508–13.
  • 33. Zhuang PY, Zhang KW, Wang JD, Zhou XP, Liu YB, Quan ZW, et al. Effect of TALEN-mediated IL-6 knockout on cell proliferation, apoptosis, invasion and anti-cancer therapy in hepatocellular carcinoma (HCC-LM3) cells. Oncotarget 2017;8:77915–27.
  • 34. Zhang X, Yin P, Di D, Luo G, Zheng L, Wei J, et al. IL-6 regulates MMP-10 expression via JAK2/STAT3 signaling pathway in a human lung adenocarcinoma cell line. Anticancer Res 2009;29: 4497–501.
  • 35. Sun C, Yang J, Cheng HB, Shen WX, Jiang ZQ, Wu MJ, et al. 2-Hydroxy-3-methylanthraquinone inhibits lung carcinoma cells through modulation of IL-6-induced JAK2/STAT3 pathway. Phytomedicine 2019;61:152848
APA BAKAR ATES F, ÇELİK A (2021). The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. , 549 - 555. https://doi.org/10.1515/tjb-2020-0508
Chicago BAKAR ATES FILIZ,ÇELİK Aybüke The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. (2021): 549 - 555. https://doi.org/10.1515/tjb-2020-0508
MLA BAKAR ATES FILIZ,ÇELİK Aybüke The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. , 2021, ss.549 - 555. https://doi.org/10.1515/tjb-2020-0508
AMA BAKAR ATES F,ÇELİK A The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. . 2021; 549 - 555. https://doi.org/10.1515/tjb-2020-0508
Vancouver BAKAR ATES F,ÇELİK A The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. . 2021; 549 - 555. https://doi.org/10.1515/tjb-2020-0508
IEEE BAKAR ATES F,ÇELİK A "The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression." , ss.549 - 555, 2021. https://doi.org/10.1515/tjb-2020-0508
ISNAD BAKAR ATES, FILIZ - ÇELİK, Aybüke. "The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression". (2021), 549-555. https://doi.org/https://doi.org/10.1515/tjb-2020-0508
APA BAKAR ATES F, ÇELİK A (2021). The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. Türk Biyokimya Dergisi, 46(5), 549 - 555. https://doi.org/10.1515/tjb-2020-0508
Chicago BAKAR ATES FILIZ,ÇELİK Aybüke The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. Türk Biyokimya Dergisi 46, no.5 (2021): 549 - 555. https://doi.org/10.1515/tjb-2020-0508
MLA BAKAR ATES FILIZ,ÇELİK Aybüke The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. Türk Biyokimya Dergisi, vol.46, no.5, 2021, ss.549 - 555. https://doi.org/10.1515/tjb-2020-0508
AMA BAKAR ATES F,ÇELİK A The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. Türk Biyokimya Dergisi. 2021; 46(5): 549 - 555. https://doi.org/10.1515/tjb-2020-0508
Vancouver BAKAR ATES F,ÇELİK A The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression. Türk Biyokimya Dergisi. 2021; 46(5): 549 - 555. https://doi.org/10.1515/tjb-2020-0508
IEEE BAKAR ATES F,ÇELİK A "The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression." Türk Biyokimya Dergisi, 46, ss.549 - 555, 2021. https://doi.org/10.1515/tjb-2020-0508
ISNAD BAKAR ATES, FILIZ - ÇELİK, Aybüke. "The confounding effect of interleukin-6 on apoptosis of MCF-7 cells through down- regulation of MMP-2/-9 mRNA expression". Türk Biyokimya Dergisi 46/5 (2021), 549-555. https://doi.org/https://doi.org/10.1515/tjb-2020-0508