Yıl: 2021 Cilt: 8 Sayı: 4 Sayfa Aralığı: 423 - 434 Metin Dili: İngilizce DOI: 10.30897/ijegeo.957284 İndeks Tarihi: 20-05-2022

Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine

Öz:
In this study, a methodology has been developed for the detection of mucilage with the help of remote sensing (UA) techniques by considering the current mucilage formation in the Sea of Marmara. For this purpose, mucilage formation from10.03.2021 to 06.06.2021 was determined by classification of Sentinel-2 (MSI) satellite images using Random Forest (RF) algorithm on Google Earth Engine (GEE) platform. Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), the Modified Normalized Difference Water Index (MNDWI) and the Automated Water Extraction Index (AWEI) indexes were used for classification. In the classification study, 5 different date ranges were determined by considering the availability of satellite images and cloud ratio. In the first date range (10.03.2021-30.03.2021), the first mucilage image was detected in the Dardanelles Strait. In the following dates, the spread of mucilage towards the Gulf of Izmit and the Gulf of Gemlik in addition to the Dardanelles was determined. Finally, in the images dated between 17.05.2021-06.06.2021, it was seen that the density of mucilage increased in the Dardanelles Strait, Izmit Gulf, Gemlik Gulf, Erdek Kapıdağ Peninsula and the north of the Marmara Island. The area covered by mucilage as of the last date range was calculated as 12,741.94 ha, and this value shows that 1.07% of the Sea of Marmara is covered with mucilage. With this developed methodology, it has been seen that mucilage formation can be detected quickly within minutes and with high accuracy from satellite images anywhere in the world.
Anahtar Kelime:

A Preliminary Study on the Intense Pelagic and Benthic Mucilage Phenomenon Observed in the Sea of Marmara

Öz:
In the intense mucilage formation observed in the Sea of Marmara in 2021, Phaeocystis pouchetii (Prymnesiophyceae) together with Skeletonema costatum, Cylindrotheca closterium, Thalassiosira rotula (Bacillariophyceae), and Gonyaulax fragilis (Dinophyceae) were detected in the foamy mucilage in the surface layer, and Chrysoreinhardia giraudii and Nematochrysopsis marina (Chrysophyceae), which are known to produce filamentous mucilage in benthic habitat. In addition, with the contribution of these groups, a higher cell abundance (2.1×107 cells/L) and chlorophyll-a value (15.9 μg/L) was reached than the mucilage event experienced in previous years. In the microscopic observations, typical dominant genera of the Sea of Marmara such as Protoperidinium and Tripos were observed very little in terms of species composition, and the fact that three previously unobserved species became dominant and the Cyanophyceae group was represented by different species indicated that phytoplankton composition changed in the mucilage formation in this period. The changing species composition with these three species that are known to make mucilage and which are new records for the Sea of Marmara point to the transportation by ship ballast waters or the inflow of brackish water with heavy rains. It is recommended to take the necessary measures to control domestic and industrial wastes and terrestrial inputs, which cause these species to reach numerical abundance and form mucilage, to carry out fisheries in a controlled manner, and to prevent the discharge of ship ballast waters and bilge waters.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aktan, Y., Dede A., Çiftçi P.S. (2008). Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey. An IOC Newsletter on toxic algae and algal blooms, The Intergovernmental Oceanographic Commission of UNESCO, 36, 1–3.
  • Artüz, L. M. (2002). Marmara ve Boğazların Ekolojisi ve Değişimler. B.Ü.Deniz Teknolojisi Sempozyumu, February.
  • Azgider, B. (2016). Determination of some biological properties of the anchovy populations [Engraulis encrasicolus (Linneaus,1758)] off Yalova in the Sea of Marmara (Marmara Denizi, Yalova açıklarında avlanan hamsi [Engraulis encrasicolus (Linneaus, 1758)] populasyonunun bazı biyolojik özelliklerinin be lirlenmesi). Balıkesir University, Balıkesir, Turkey. Balkıs N., Atabay H., Turetgen I. , Albayrak S. , Balkıs H., Tüfekçi V. (2011). Role of single-celled organisms in mucilage formation on the shores of Buyukada Island (the Sea of Marmara). Journal of the Marine Biological Association of the United Kingdom, 91, 771–781.
  • Artüz, M. L., Okay, I. A., Mater, B., Artüz, O. B., Gürseler, G., Okay, N. (2007). Bilimsel Açıdan Marmara Denizi. Istanbul: Union of Turkish Bar Associations Publication.
  • Balkıs, N. (2003). Seasonal variations in the phytoplankton and nutrient dynamics in the neritic water of Büyükçekmece Bay, Sea of Marmara. Journal of Plankton Research, 25, 703–717.
  • Ateş, A. M., Yilmaz, O. S., Gülgen, F. (2020). Using remote sensing to calculate fl oating photovoltaic technical potential of a dam ’ s surface. Sustainable Energy Technologies and Assessments, 41(July), 100799. doi.10.1016/j.seta.2020.100799.
  • Balkıs, N., Sivri, N., Linda Fraim, N., Balci, M., Durmus, T., Sukatar, A. (2013). Excessive growth of Cladophora laetevirens (Dillwyn) Kutzing and enteric bacteria in mats in the Southwestern Istanbul coast, Sea of Marmara. IUFS Journal of Biology, 72(2), 41–48.
  • Balkis-Ozdelice, N., Durmuş, T., Balcı, M. (2021). A Preliminary Study on the Intense Pelagic and Benthic Mucilage Phenomenon Observed in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 414-422. doi.10.30897/ijegeo.954787.
  • Bätje, M., Michaelis, H. (1986). Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Marine Biology, 93(1), 21–27.
  • Besiktepe S, Sur HI, Özsoy E, Latif MA, Oğuz T, Ünlüata Ü (1994) The circulation and hydrography of the Marmara Sea. Prog Oceanogr 34:285–334 Bi, L., Fu, B. L., Lou, P. Q., Tang, T. Y. (2020).
  • Chang, F.H. (1983). The musilage-producing Phaeocystis pouchetii (Prymnesiophyceae), cultured from the 1981 “Tasman Bay slime”. New Zealand Journal of Marine and Freshwater Research, 17, 165–168.
  • Delineation water of pearl river basin using Landsat images from Google Earth Engine. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W10), 5–10. doi.10.5194/isprs-archives-XLII- 3-W10-5-2020
  • Çamur, D., Topbaş, M., İlter, H., Albay, M., Ayoğlu, F.N., Can, M., Altın, A., Demirtaş, Y., Parlak-Somuncu, B., Aydın, F., Açıkgöz, B. (2021). Heavy metals and trace elements in whole-blood samples of the fishermen in Turkey: The fish/ermen heavy metal study (FHMS). Environmental Management, 67(3), 553–562.
  • Biau, G., Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. doi.10.1007/s11749- 016-0481-7
  • Dacey, J.W.H, King, G.M., Lobel, P.S. (1994). Herbivory by reef fishes and the production of dimethylsulfide and acrylic acid. Marine Ecology Progress Series, 112, 67–74. Demir, V. (2011). Marine biological diversity assessment for marine conservation planning in Antalya-Kas using decision support systems (Kaş (Antalya) deniz koruma planlamasında karar destek sistemleri kullanılarak biyoçeşitlilik araştırması). Istanbul University, Istanbul, Turkey.
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. doi.10.1023/A:1010933404324
  • Ergül, H.E., Aksan, S. (2013). Evaluation of non-essential element and micronutrient concentrations in seafood from the Marmara and Black Seas. Journal of Black Sea/Mediterranean Environment, 19(3), 312–331.
  • Cohen, J. (1960). Kappa: Coefficient of concordance. Educ Psych Measurement, 20(37).
  • Estep, K.W., Nejstgaard, J.C., Skjoldal, H.R., Rey, F. (1990). Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey. Marine Ecology Progress Series, 67, 235–249.
  • Çelik, O, Gazioğlu, C. (2020). Coastline Difference Measurement (CDM) Method. International Journal of Environment and Geoinformatics, 7(1), 1-5. doi 10.30897/ijegeo.706792
  • Flander-Putrle, V., Malej, A. (2008). The evolution and phytoplankton composition of mucilaginous aggregates in the northern Adriatic Sea. Harmful Algae, 7, 752–761.
  • Feyisa, G. L., Meilby, H., Fensholt, R., Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23– 35. doi.10.1016/j.rse.2013.08.029
  • Guieu, C., Loye-Pilot, M.D., Ridame, C., Thomas, C. (2002). Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. Journal of Geophysical Research, 107(15), 1–11.
  • Gazioğlu, C. (2018). Biodiversity, Coastal Protection, Promotion and Applicability Investigation of the Ocean Health Index for Turkish Seas, International Journal of Environment and Geoinformatics, 5(3), 353-367. doi. 10.30897/ijegeo.484067.
  • Guillard, R.R.L., Hellebust, J.A. (1971). Growth and the production of extracellular substances by two strains of Phaeocystis pouchetii. Journal of Phycology, 7, 330–338.
  • Gazioğlu, C., Gökaşan, E., Algan, O. Yücel, Z. Y., Tok, B., Doğan, E., (2002). Morphologic features of the Marmara Sea from multi-beam data, Mar. Geol., 190(1– 2): 397–420.
  • Gullu, G.H., Olmez, I., Aygun, S., Tuncel, G., (1998). Atmospheric trace element concentration over the eastern Mediterranean Sea: Factors affecting temporal variability. Journal of Geophysical Research, 103, 21943–21954. Hamm, C.E., (2000). Architecture, ecology and biogeochemistry of Phaeocystis colonies. Journal of Sea Research, 43, 307–315.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
  • Hansen, E., Ernstsen, A., Eilertsen, H.C. (2004). Isolation and characterization of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim. Toxicology, 199, 207–217.
  • Haque, M. I., Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egyptian Journal of Remote Sensing and Space Science, 20(2), 251– 263. doi.10.1016/j.ejrs.2016.12.003
  • Hoffmann, L., Billard, C., Janssens, M., Leruth, M., Demoulin, V. (2000). Mass development of marine benthic Sarcinochrysidales (Chrysophyceae s.l.) in Corsica. Botanica Marina, 43, 223–231.
  • Huang, W., DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Creed, I. F., Carroll, M. L. (2018). Automated extraction of surface water extent from Sentinel-1 data. Remote Sensing, 10(5), 1–18. doi.10.3390/rs10050797
  • Hornbuckle, K.C., Achman, D.R., Eisenreich, S.J. (1993). Over-water and over-land polychlorinated biphenyls in Green Bay, Lake Michigan. Environmental Science & Technology, 27(1), 87–98.
  • Jena, R., Pradhan, B., Jung, H., Rai, A. K., Rizeei, H. M. (2020). Seasonal water change assessment at Mahanadi River, India using multi-temporal data in Google earth engine. Korean Journal of Remote Sensing, 36(1), 1–13.
  • Ignatiades, L., Gotsis-Skretas, O. (2010). A review on toxic and harmful algae in Greek coastal waters (E. Mediterranean Sea). Toxins, 2, 1019–1037.
  • Martinez, E. M. (2003). Remote Sensing Techniques for Land Use Classification of Rio Jauca Watershed Using Ikonos Images. 1–5. McFeeters. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi.10.1080/01431169608948714
  • Kayser, H. (1970). Experimental-ecological investigations on Phaeocystis pouchetii (Haptophyceae); cultivation and waste water test. Helgolander wissenschaftliche Meeresuntersuchungen, 20, 195–212.
  • Nguyen, U. N. T., Pham, L. T. H., Dang, T. D. (2019). An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environmental Monitoring and Assessment, 191(4), 1–12. doi.10.1007/s10661-019- 7355-x
  • LaGrega, M.D., Buckingham P.L., Evans, J.C. (1994). The environmental resources management group: Hazardous waste management. Singapore: McGraw- Hill.
  • Özalp, H. B. (2021). First massive mucilage event observed in deep waters of Çanakkale Strait (Dardanelles ), Turkey. J. Black Sea/Mediterranean Environment, 27(1), 49–66.
  • Lancelot, C. (1995). The mucilage phenomenon in the continental coastal waters of the North Sea. The Science of the Total Environment, 165, 83–102.
  • Pekel, J. F., Cottam, A., Gorelick, N., Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. doi.10.1038/nature20584
  • Margalef, R. (1978). Phytoplankton communities in upwelling area. The examples of N.W. Africa. Oecologia aquatica, 3, 97–132.
  • Qiao, C., Luo, J., Sheng, Y., Shen, Z., Zhu, Z., Ming, D. (2012). An Adaptive Water Extraction Method from Remote Sensing Image Based on NDWI. Journal of the Indian Society of Remote Sensing, 40(3), 421–433. doi.10.1007/s12524-011-0162-7
  • Mecozzi, M., Pietroletti, M., Conti, M.E. (2008). The complex mechanisms of marine mucilage formation by spectroscopic investigation of the structural characteristics of natural and synthetic mucilage samples. Marine Chemistry, 112(1-2), 38–52.
  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec, 351, 309.
  • Mingazzini, M., Thake, B. (1995). Summary and conclusions of the workshop on marine mucilages in the Adriatic Sea and elsewhere. The Science of the Total Environment, 165, 9–14.
  • Savun-Hekimoğlu, B., Gazioğlu, C. (2021). Mucilage Problem in the Semi-Enclosed Seas : Recent Outbreak in the Sea of Marmara. International Journal of Environment and Geoinformatics (IJEGEO), 8(4). doi.10.30897/ijegeo.955739
  • Moncheva, S. (1991). Eutrophication/plankton blooms/hypoxia. Presented at International Workshop on the Black Sea: Focus on the Western Black Sea Shelf, Varna, Bulgaria, 30 September– 04 October, 1991.
  • Schiaparelli, S., Castellano, M., Povero, P., Sartoni, G., Cattaneo‐ Vietti, R. (2007). A benthic mucilage event in North‐ Western Mediterranean Sea and its possible relationships with the summer 2003 European heatwave: short term effects on littoral rocky assemblages. Marine Ecology, 28(3), 341– 353.
  • NASA–Worldview (2021). Retrieved May 15th, 2021 from https://worldview.earthdata.nasa.gov Petrova-Karadjova, V.J. (1990). Monitoring of the blooms along the Bulgarian Black Sea coast. Rapp. Comm. Int. Mer. Medit., 32(1), 209.
  • Simav, Ö., Şeker, D.Z., Tanık, A. Gazioğlu, C. (2015). Determining the endangered fields of Turkish coasts with coastal vulnerability index. Journal of Map, 153: 1- 8
  • Pompei M., Mazziotti C., Guerrini F., Cangini M., Pigozzi S., Benzi M., Palamidesi S., Boni L.,
  • Tufekçi, V., Balkis, N., Polat Beken, Ç., Ediger, D., Mantıkçı, M. (2010). Phytoplankton composition and environmental conditions of a mucilage event in the Sea of Marmara. Turkish Journal of Biology, 34(2), 199–210. doi.10.3906/biy-0812-1
  • Pistocchi R. (2003). Correlation between the presence of Gonyaulax fragilis (Dinophyceae) and the mucilage phenomena of the Emilia-Romagna coast (northern Adriatic Sea). Harmful Algae, 2, 301–316.
  • Ülker, D., Ergüven, O., Gazioğlu, C. (2018). Socioeconomic impacts in a Changing Climate: Case Study Syria. International Journal of Environment and Geoinformatics, 5(1), 84-93. doi.10.30897/ijegeo.406273
  • Revelante N., Gilmartin G. (1991). The phytoplankton composition and population enrichment in gelatinous “macroaggregates” in the northern Adriatic during the summer of 1989. Journal of Experimental Marine Biology and Ecology, 146, 217–233.
  • Wang, C., Jia, M., Chen, N., Wang, W. (2018). Longterm surface water dynamics analysis based on landsat imagery and the Google Earth Engine Platform: A case study in the middle Yangtze River Basin. Remote Sensing, 10(10), 1635. doi.10.3390/rs10101635
  • Riegman, R., Noordeloos, A.A.M., Cadee, C. (1992). Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Marine Biology, 112, 479–484.
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. doi.10.1080/01431160600589179
  • Rousseau, V., Vaulot, D., Casotti, R., Cariou, V., Lenz, J., Gunkel, J., Baumann, J. (1994). The life cycle of Phaeocystis (Prymnesiophyceae): Evidence and hypotheses. Journal of Marine Systems, 5(1), 23–39.
  • Yang, X., Qin, Q., Grussenmeyer, P., Koehl, M. (2018). Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219, 259–270. doi.10.1016/j.rse.2018.09.016
  • Savun-Hekimoğlu, B and Gazioğlu, C. (2021). Mucilage Problem in the Semi-Enclosed Seas: Recent outburst in the Sea of Marmara. International Journal of Environment and Geoinformatics (IJEGEO), 8(4): 402-413, doi. 10.30897/ijegeo.955739.
  • Yılmaz, O. S., Oruç, M. S., Ateş, A. M., Gülgen, F. (2021). Orman Yangın Şiddetinin Google Earth Engine ve Coğrafi Bilgi Sistemleri Kullanarak Analizi: Hatay-Belen Örneği. Journal of the Institute of Science and Technology, 11(2), 1519– 1532. doi.10.21597/jist.817900
  • Saydam, A.C. (2014). Desert dust cloud interactions and natural iron enrichment mechanism. International Journal of Environment and Geoinformatics, 1(1-3), 1–11.
  • Zibordi, G., Hooker, S. B. (2000). Marine optical measurements of a mucilage event in the northern Adriatic Sea. 45(2), 322–327.
  • Sieburth, J.M. (1960). Acrylic acid, and “antibiotic” principle in Phaeocystis in Antarctic waters. Science, 132, 676–677.
  • Sournia, A. (1982). Form and funtion in marine phytoplankton. Biological reviews, 57, 347–394.
  • Taşdemir, Y. (2002). Marmara Denizi: kirleticiler ve çevre açısından alınabilecek tedbirler. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 7(1), 39–45.
  • Tinti, F., Boni, L., Pistocchi, R., Riccardi, M., Guerrini, F. (2007). Species-specific probe, based on 18S rDNA sequence, could be used for identification of the mucilage producer microalga Gonyaulax fragilis (Dinophyta). Hydrobiologia, 580, 259–263.
  • Toklu-Alicli, B., Polat, S., Balkıs-Ozdelice, N. (2020). Temporal variations in the abundance of picoplanktonic Synechococcus (Cyanobacteria) during a mucilage event in the Gulfs of Bandırma and Erdek. Estuarine, Coastal and Shelf Science, 233, 1–12.
  • Tüfekçi, V., Balkıs, N., Beken, C.P., Ediger, D., Mantıkçı, M. (2010). Phytoplankton composition and environmental conditions of a mucilage event in the Sea of Marmara. Turkish Journal of Biology, 34, 199–210.
  • Urbani, R., Magaletti, E., Sist, P., Cicero, A.M. (2005). Extracellular carbohydrates released by the marine diatoms Cylindrotheca closterium, Thalassiosira pseudonana and Skeletonema costatum: Effect of Pdepletion and growth status. Science of The Total Environment, 353 (1–3), 300–306.
  • Veldhuis, M.J.W., Colijn, F., Venekamp, L.A.H. (1986). The spring bloom of Phaeocystis pouchetii (haptophyceae) in Dutch coastal waters. Netherlands Journal of Sea Research, 20(1), 37–48.
  • Verity, P.G., Brussaard, C.P., Nejstgaard, J.C., van Leeuwe, M.A., Lancelot, C., Medlin, L.K. (2007). Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research. Biogeochemistry, 83, 311–330.
APA ACAR U, BALKIS-OZDELICE N, Yılmaz O, Durmuş T, Ateş A, BALCI M, Balik Sanli F, BALCI M, GÜLGEN F (2021). Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. , 423 - 434. 10.30897/ijegeo.957284
Chicago ACAR UGUR,BALKIS-OZDELICE NESLIHAN,Yılmaz Osman Salih,Durmuş Turgay,Ateş Ali Murat,BALCI Muharrem,Balik Sanli Fusun,BALCI Muharrem,GÜLGEN Fatih Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. (2021): 423 - 434. 10.30897/ijegeo.957284
MLA ACAR UGUR,BALKIS-OZDELICE NESLIHAN,Yılmaz Osman Salih,Durmuş Turgay,Ateş Ali Murat,BALCI Muharrem,Balik Sanli Fusun,BALCI Muharrem,GÜLGEN Fatih Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. , 2021, ss.423 - 434. 10.30897/ijegeo.957284
AMA ACAR U,BALKIS-OZDELICE N,Yılmaz O,Durmuş T,Ateş A,BALCI M,Balik Sanli F,BALCI M,GÜLGEN F Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. . 2021; 423 - 434. 10.30897/ijegeo.957284
Vancouver ACAR U,BALKIS-OZDELICE N,Yılmaz O,Durmuş T,Ateş A,BALCI M,Balik Sanli F,BALCI M,GÜLGEN F Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. . 2021; 423 - 434. 10.30897/ijegeo.957284
IEEE ACAR U,BALKIS-OZDELICE N,Yılmaz O,Durmuş T,Ateş A,BALCI M,Balik Sanli F,BALCI M,GÜLGEN F "Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine." , ss.423 - 434, 2021. 10.30897/ijegeo.957284
ISNAD ACAR, UGUR vd. "Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine". (2021), 423-434. https://doi.org/10.30897/ijegeo.957284
APA ACAR U, BALKIS-OZDELICE N, Yılmaz O, Durmuş T, Ateş A, BALCI M, Balik Sanli F, BALCI M, GÜLGEN F (2021). Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. International Journal of Environment and Geoinformatics, 8(4), 423 - 434. 10.30897/ijegeo.957284
Chicago ACAR UGUR,BALKIS-OZDELICE NESLIHAN,Yılmaz Osman Salih,Durmuş Turgay,Ateş Ali Murat,BALCI Muharrem,Balik Sanli Fusun,BALCI Muharrem,GÜLGEN Fatih Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. International Journal of Environment and Geoinformatics 8, no.4 (2021): 423 - 434. 10.30897/ijegeo.957284
MLA ACAR UGUR,BALKIS-OZDELICE NESLIHAN,Yılmaz Osman Salih,Durmuş Turgay,Ateş Ali Murat,BALCI Muharrem,Balik Sanli Fusun,BALCI Muharrem,GÜLGEN Fatih Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. International Journal of Environment and Geoinformatics, vol.8, no.4, 2021, ss.423 - 434. 10.30897/ijegeo.957284
AMA ACAR U,BALKIS-OZDELICE N,Yılmaz O,Durmuş T,Ateş A,BALCI M,Balik Sanli F,BALCI M,GÜLGEN F Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. International Journal of Environment and Geoinformatics. 2021; 8(4): 423 - 434. 10.30897/ijegeo.957284
Vancouver ACAR U,BALKIS-OZDELICE N,Yılmaz O,Durmuş T,Ateş A,BALCI M,Balik Sanli F,BALCI M,GÜLGEN F Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. International Journal of Environment and Geoinformatics. 2021; 8(4): 423 - 434. 10.30897/ijegeo.957284
IEEE ACAR U,BALKIS-OZDELICE N,Yılmaz O,Durmuş T,Ateş A,BALCI M,Balik Sanli F,BALCI M,GÜLGEN F "Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine." International Journal of Environment and Geoinformatics, 8, ss.423 - 434, 2021. 10.30897/ijegeo.957284
ISNAD ACAR, UGUR vd. "Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine". International Journal of Environment and Geoinformatics 8/4 (2021), 423-434. https://doi.org/10.30897/ijegeo.957284