Yıl: 2022 Cilt: 37 Sayı: 3 Sayfa Aralığı: 1427 - 1440 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.931836 İndeks Tarihi: 29-07-2022

Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi

Öz:
Boyar maddelerin yoğun kullanıldığı tekstil endüstrisi atıksuları, genellikle biyolojik olarak kendiliğinden parçalanamayan büyük moleküllü toksik organik yapıları barındırdığından, konvansiyonel arıtım metotlarının yenilikçi adımlarla desteklenmesi önem arz etmektedir. Bu çalışmada, demir metali ile modifiye edilmiş kitosan (CS) adsorbent maddesi geliştirilmiş ve Reactive Orange (RO16) boyar maddesinin giderimi üzerine etkisi incelenmiştir. Bu amaçla, kitosan üzerine yüklenebilen maksimum demir miktarının belirlenmesi için 250, 500 ve 750 mg/L [Fe+2] konsantrasyonu olan FeSO4 çözeltisi ve kitosan 25oC sıcaklıkta 2 h reaksiyona tabi tutulmuştur. Demir ile modifiye edilmiş adsorbent maddeler sırasıyla CSFe-1, CSFe-2 ve CSFe-3 olarak tanımlanmış ve birim Fe+2 adsorpsiyon değerleri 79mg/g, 112mg/g ve 110mg/g olarak hesaplanmıştır. RO16 boyar maddesinin giderimi üzerine etkisi incelemek için CSFe-1 ve CSFe-2 adsorbent maddeleri seçilmiştir. 50 mg/L RO16 sulu çözeltisi ortamında 0,5g/L adsorbent madde kullanarak yürütülen adsorpsiyon çalışmalarının sonunda saf kitosan ile renk giderim verimi %25 iken, CSFe-1 ve CSFe-2 ile renk giderim verimi %90’a ulaşmış ve RO16 boyar maddesi için adsorbentlerin maksimum adsorpsiyon kapasiteleri sırasıyla 27, 91 ve 88 mg/g olarak hesaplanmıştır.
Anahtar Kelime: boyar madde giderimi adsorpsiyon adsorbent kitosan demir modifikasyonu

The effect of iron-loaded chitosan on the removal of Reactive Orange 16 dye

Öz:
In this study, iron modified chitosan (CS) adsorbent material was developed, and Reactive Orange 16 (RO16) dye removal was investigated. To determine the maximum iron content, chitosan was agitated at 25℃ for 2h with FeSO4 solution containing 250, 500 and 750 mg/L [Fe+2]. The adsorbents were identified as CSFe1, CSFe-2 and CSFe-3. Fe+2 adsorption values were calculated as 79, 112 and 110 mg/g. CSFe-1 and CSFe2 adsorbents were selected, and adsorption studies were carried out in 50 mg/L RO16 solutions at 0.5 g/L adsorbent amount. The color removal efficiencies were calculated as 27, 91 and 88 mg/g for pure chitosan, CSFe-1 and CSFe-2, respectively and found as 25% with pure chitosan, 90% for both CSFe-1 and CSFe-2. The best yield was obtained for the CSFe-1 adsorbent. To determine the optimum adsorption conditions, adsorbent amount (0.25, 0.5, 1 g CSFe-1/L), agitation speed (250, 350 rpm), dye solution concentration (25, 50, 100 mg/L) and temperature (25, 50℃) effects were investigated. The 0.5 g CSFe-1/L loading, 250 rpm, 25℃ and 50 mg/L dye solution concentration was determined, and 92% color removal efficiency was obtained. Color removal efficiencies of CSFe-1 in three consecutive runs were calculated as 92, 90 and 87%, respectively.
Anahtar Kelime: chitosan adsorption

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Mani S. and Bharagava R. N., Textile Industry Wastewater Environmental and Health Hazards and Treatment Approaches, Recent Advances in Environmental Management, 1, 47-69, 2018.
  • 2. Zhu M. X., Lee L., Wang H. H., and Wang Z., Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud, Journal of Hazard. Mater., 149 (3), 735–741, 2007.
  • 3. Mani S. and Bharagava R. N., Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, in Reviews of Environmental Contamination and Toxicology, 237, 71–104, 2016.
  • 4. Brillas E. and Martínez-Huitle C. A., Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Applied Catalysis B: Environmental, 166–167, 603–643, 2015.
  • 5. Okur M., Koyuncu D.D.E., The evaluation of hydroxyapatite synthesized from waste eggshell in the adsorption of Remazol N.Blue RGB dye, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (1), 419–430, 2020.
  • 6. Kopaç T., Sulu E., Comparison of the adsorption behavior of Basic Red 46 textile dye on various activated carbons obtained from Zonguldak coal, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1227–1240, 2019.
  • 7. Santos S. C. R. and Boaventura R. A. R., Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent, Journal of Hazardous Materials, 291, 74–82, 2015.
  • 8. Marrakchi F., Ahmed M. J., Khanday W. A., Asif M., and Hameed B. H., Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption, Journal of the Taiwan Institute of Chemical Engineers, 71, 47–54, 2017.
  • 9. Aguayo-Villarreal I. A., Hernández-Montoya V., Rangel-Vázquez N. A., and Montes-Morán M. A., Determination of QSAR properties of textile dyes and their adsorption on novel carbonaceous adsorbents, Journal of Molecular Liquids, 196, 326–333, 2014.
  • 10. El Haddad M., Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye onto animal bone meal, Journal of Chemical Engineering, 3 (3), 38–44, 2012.
  • 11. Qiu Y., Zheng Z., Zhou Z., and Sheng G. D., Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresource Technology, 100 (21), 5348–5351, 2009.
  • 12. Parshetti G. K., Chowdhury S., and Balasubramanian R., Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters, Bioresource Technology, 161, 310–319, 2014.
  • 13. Calvete T., Lima E. C., Cardoso N. F., Vaghetti J. C. P., Dias S. L. P., and Pavan F. A., Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies, Journal of Environmental Management, 91 (8), 1695–1706, 2010.
  • 14. Marrakchi F., Khanday W. A., Asif M., and Hameed B. H., Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16, International Journal of Biological Macromolecules, 93, 1231–1239, 2016.
  • 15. Qamar S. A., Ashiq M., Jahangeer M., Riasat A., and Bilal M., Chitosan-based hybrid materials as adsorbents for textile dyes–A review, Case Studies in Chemical and Environmental Engineering, 2, 100021, 2020.
  • 16. Gazi M. and Shahmohammadi S., Removal of trace boron from aqueous solution using iminobis-(propylene glycol) modified chitosan beads, Reactive and Functional Polymers, 72 (10), 680–686, 2012.
  • 17. Kumar D., Gihar S., Shrivash M. K., Kumar P., and Kundu P. P., A review on the synthesis of graft copolymers of chitosan and their potential applications, International Journal of Biological Macromolecules, 163, 2097–2112, 2020.
  • 18. Vakili M., Rafatullaha M., Salamatinia B., Abdullah A. Z., Ibrahim M. H., Tan K. B., Gholami Z., Amouzgar P., Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review, Carbohydrate Polymers, 113, 115–130, 2014.
  • 19. Özdemir Z., Kitin, kitosanın fonksiyonel özellikleri ve kullanım alanları ‘Functional Properties and Uses of Chitin, Chitosan, Kimya ve Sanayi, 104–117, 2014.
  • 20. Biswas S., Rashid T. U., Debnath T., Haque P., and Rahman M. M., Application of Chitosan-Clay Biocomposite Beads for Removal of Heavy Metal and Dye from Industrial Effluent, Journal of Composites Science, 4 (1), 16, 2020.
  • 21. Yang C. H. Wang C. Y., Huang K. S., Yeh C. S., Wang A. J., Wang W. T., Lin M. Y., Facile Synthesis of Radial-Like Macroporous Superparamagnetic Chitosan Spheres with In-Situ Co-Precipitation and Gelation of Ferro-Gels, PLoS One, 7 (11), 2012.
  • 22. Saheed I. O., Da Oh W., and Suah F. B. M., Chitosan modifications for adsorption of pollutants – A review, Journal of Hazardous Materials, 408, 124889, 2021.
  • 23. Zhang Y., Zhao M., Cheng Q., Wang C., Li H., Han X., Fan Z., Su G., Pan D., Li Z., Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review, Chemosphere, 279, 130927, 2021.
  • 24. Tsai B., Garcia-Valdez O., Champagne P., and Cunningham M. F., Poly(poly(ethylene glycol) methyl ether methacrylate) grafted chitosan for dye removal from water, Processes, 5 (1), 2017.
  • 25. Tzereme A., Christodoulou E., Kyzas G. Z., Kostoglou M., Bikiaris D. N., and Lambropoulou D. A., Chitosan grafted adsorbents for diclofenac pharmaceutical compound removal from single-component aqueous solutions and mixtures, Polymers (Basel), 11 (3), 2019.
  • 26. Guibal E., Vincent T., and Navarro R., Metal ion biosorption on chitosan for the synthesis of advanced materials, Journal of Materials Science, 49 (16), 5505– 5518, 2014.
  • 27. Snoeyink V. and Jenkins D., Water Chemestry, New York,1980.
  • 28. Rice, E.W., Baird, R.B., Eaton, A.D., Standard Methods for the Examination of Water and Wastewater, 23. Baskı. Washington DC, 2017.
  • 29. Wang C. Y., Yang C. H., Huang K. S., Yeh C. S., Wang A. H. J., and Chen C. H., Electrostatic droplets assisted in situ synthesis of superparamagnetic chitosan microparticles for magnetic-responsive controlled drug release and copper ion removal, Journal of Materials Chemistry B, 1 (16), 2205–2212, 2013.
  • 30. Yan J., Yang H., da Silva J. C., and Rojas O. J., Loading of Iron (II, III) Oxide Nanoparticles in Cryogels Based on Microfibrillar Cellulose for Heavy Metal Ion Separation, Advances in Polymer Technology., 2020, 1– 8, 2020.
  • 31. Parthasarathy P. and Narayanan S. K., Performance of Fe-Loaded Chitosan Carbonized Rice Husk Beads (FeCCRB) for Continuous Adsorption of Metal Ions from Industrial Effluent, Environmental Progress & Sustainable Energy, 33 (3), 676–680, 2014.
  • 32. Abdul Mubarak N. S., Chuan T. W., Khor H. P., Jawad A. H., Wilson L. D., and Sabar S., Immobilized FeLoaded Chitosan Film for Methyl Orange Dye Removal: Competitive Ions, Reusability, and Mechanism, Journal of Polymers and the Environment, 29 (4), 1050–1062, 2021.
  • 33. Karthikeyan P., Banu H. A. T., and Meenakshi S., Synthesis and characterization of metal loaded chitosanalginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution, International Journal of Biological Macromolecules, 130, 407–418, 2019.
  • 34. Liu H., Yang F., Zheng Y., Kang J., Qu J., and Chen J. P., Improvement of metal adsorption onto chitosan /Sargassum sp. composite sorbent by an innovative ion imprint technology, Water Research, 45 (1), 145–154, 2011.
  • 35. Annadurai G., Ling L. Y., and Lee J. F., Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis, Journal of Hazardous Materials, 152 (1), 337–346, 2008.
  • 36. Rosa S., Laranjeira M. C. M., Riela H. G., and Fávere V. T., Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions, Journal of Hazardous Materials, 155, 253– 260, 2008.
  • 37. Kimura I. Y., Laranjeira M. C. M., De Fávere V. T., and Furlan L., The interaction between reactive dye containing vinylsulfone group and chitosan microspheres, International Journal of Polymeric Materials and Polymeric Biomaterials, 51 (8), 759–768, 2002.
  • 38. Jawad A. H., Azharul Islam M., and Hameed B. H., Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16, International Journal of Biological Macromolecules, 95, 743–749, 2017.
APA Ceylan E, Başaran Dindaş G, Bektaş N, Yatmaz H (2022). Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. , 1427 - 1440. 10.17341/gazimmfd.931836
Chicago Ceylan Eda,Başaran Dindaş Gizem,Bektaş Nihal,Yatmaz H Cengiz Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. (2022): 1427 - 1440. 10.17341/gazimmfd.931836
MLA Ceylan Eda,Başaran Dindaş Gizem,Bektaş Nihal,Yatmaz H Cengiz Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. , 2022, ss.1427 - 1440. 10.17341/gazimmfd.931836
AMA Ceylan E,Başaran Dindaş G,Bektaş N,Yatmaz H Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. . 2022; 1427 - 1440. 10.17341/gazimmfd.931836
Vancouver Ceylan E,Başaran Dindaş G,Bektaş N,Yatmaz H Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. . 2022; 1427 - 1440. 10.17341/gazimmfd.931836
IEEE Ceylan E,Başaran Dindaş G,Bektaş N,Yatmaz H "Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi." , ss.1427 - 1440, 2022. 10.17341/gazimmfd.931836
ISNAD Ceylan, Eda vd. "Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi". (2022), 1427-1440. https://doi.org/10.17341/gazimmfd.931836
APA Ceylan E, Başaran Dindaş G, Bektaş N, Yatmaz H (2022). Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1427 - 1440. 10.17341/gazimmfd.931836
Chicago Ceylan Eda,Başaran Dindaş Gizem,Bektaş Nihal,Yatmaz H Cengiz Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no.3 (2022): 1427 - 1440. 10.17341/gazimmfd.931836
MLA Ceylan Eda,Başaran Dindaş Gizem,Bektaş Nihal,Yatmaz H Cengiz Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.37, no.3, 2022, ss.1427 - 1440. 10.17341/gazimmfd.931836
AMA Ceylan E,Başaran Dindaş G,Bektaş N,Yatmaz H Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(3): 1427 - 1440. 10.17341/gazimmfd.931836
Vancouver Ceylan E,Başaran Dindaş G,Bektaş N,Yatmaz H Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(3): 1427 - 1440. 10.17341/gazimmfd.931836
IEEE Ceylan E,Başaran Dindaş G,Bektaş N,Yatmaz H "Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37, ss.1427 - 1440, 2022. 10.17341/gazimmfd.931836
ISNAD Ceylan, Eda vd. "Demir yüklenmiş kitosanın Reaktif Turuncu 16 boyar maddesinin giderimine etkisi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (2022), 1427-1440. https://doi.org/10.17341/gazimmfd.931836