Yıl: 2022 Cilt: 37 Sayı: 4 Sayfa Aralığı: 1735 - 1749 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.602742 İndeks Tarihi: 29-07-2022

HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi

Öz:
Homojen dolgulu sıkıştırma ile ateşlemeli (HCCI) motorların yüksek termik verimleri ve düşük NOx emisyonları sebebiyle buji ile ateşlemeli (SI) ve sıkıştırma ile ateşlemeli (CI) motorlara göre önemli üstünlükleri bulunmaktadır. Ancak HCCI motorlarda yanma başlangıcının kontrol edilmesi oldukça zordur. Bu çalışmada, dört silindirli SI motordan dönüştürülmüş olan bir HCCI motoru kullanılmıştır. 373 K hava giriş sıcaklığında, 1000 dev/dk motor hızında ve lambdanın 3.0 olduğu şartlarda, emme manifold basıncının HCCI yanma üzerine etkileri deneysel olarak incelenmiştir. Deney yakıtı olarak RON0, RON20 ve RON40 kullanılmıştır. Manifold basıncının artmasıyla yanma başlangıcının tüm yakıtlarda avansa alındığı gözlenmiştir. Ayrıca oktan sayısının değişiminin de yanma başlangıcı üzerine önemli etkileri olduğu gözlenmiştir. HCCI yanmasında en yüksek indike termik verim RON40 yakıtı kullanımında, 120 kPa manifold basıncında %46,38 olarak kaydedilmiştir. Manifold basıncının artırılmasına bağlı olarak volümetrik verimin de artması maksimum silindir içi basınç ve ısı yayılımında artış sağlamıştır. Ancak manifold basıncının daha fazla artırılması silindir içi reaksiyon hızını da artırdığından RON0 ve RON20 yakıtı kullanımında vuruntu meydana gelmiştir. Bu çalışmada düşük sıkıştırma oranına sahip HCCI motorunda en ideal manifold basıncının 120 kPa ve en ideal yakıtın RON40 olduğu sonucuna varılmıştır.
Anahtar Kelime: yanma düşük sıcaklıkta yanma motor performansı HCCI

Investigation of the Effects of Intake Manifold Pressure on Performance and Combustion Characteristics in an HCCI Engine

Öz:
Homogeneous charge compression ignition (HCCI) engines have significant advantages over spark ignition (SI) and compression ignition (CI) engines due to their high thermal efficiency and low NOx emissions. However, it is difficult to control the start of combustion. In this study, the effects of the intake manifold pressure on HCCI combustion were investigated experimentally at 373 K intake temperature, at 1000 rpm engine speed and lambda value of 3.0 in a four cylinders HCCI engine, which was transformed from the SI engine. RON0, RON20 and RON40 were used as experimental fuel. It was observed that there was an advance in the start of combustion as the manifold pressure increased. It was also observed that the changes in octane number had significant effects on the start of combustion. The highest thermal efficiency in HCCI combustion was recorded as 46,38% at 120 kPa manifold pressure using RON40 fuel. The increase in the volumetric efficiency that depends on the increase in manifold pressure provided an increase in maximum cylinder pressure and heat release. The results showed that the ideal manifold pressure was 120 kPa and the most ideal fuel was RON40 in HCCI engine with a low compression ratio.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Calam T.T., Electrochemical oxidative determination and electrochemical behavior of 4‐nitrophenol based on an au electrode modified with electro‐polymerized 3, 5‐ diamino‐1, 2, 4‐triazole film, Electroanalysis, 1 (32), 149-158, 2020.
  • 2. Holdren J.P., Population and the energy problem, Population and Environment, 12 (3), 231-255, 1991.
  • 3. Calam T.T., Investigation of the electrochemical behavior of phenol using 1H-1, 2, 4-triazole-3-thiol modified gold electrode and its voltammetric determination, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 835-844, 2020.
  • 4. Midilli A., Dincer I., Ay M., Green energy strategies for sustainable development, Energy Policy, 34 (18), 3623- 3633, 2006.
  • 5. Calam T.T., Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for highsensitive voltammetric determination of catechol in tap and lake water samples, International Journal of Environmental Analytical Chemistry, 99 (13), 1298- 1312, 2019.
  • 6. Poulopoulos S.G., Samaras D.P., Philippopoulos C.J., Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels, Atmospheric environment, 35 (26), 4399-4406, 2001.
  • 7. Yilmaz E., Solmaz H., Polat S., Altin M., Effect of the three-phase diesel emulsion fuels on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (1), 127-134, 2013.
  • 8. Polat S., Uyumaz A., Solmaz H., Yilmaz E., Topgul T. and Yucesu H.S., A numerical study on the effects of EGR and spark timing to combustion characteristics and NOx emission of a GDI engine, International Journal of Green Energy, 13 (1), 63-67, 2016.
  • 9. Ardebili S.M.S., Solmaz H., Mostafaei M., Optimization of fusel oil–gasoline blend ratio to enhance the performance and reduce emissions, Applied Thermal Engineering, 148, 1334-1345, 2019.
  • 10. Celik M., Yucesu H.S. and Guru M., Investigation of the effects of organic based manganese addition to biodiesel on combustion and exhaust emissions, Fuel Processing Technology, 152, 83-92, 2016.
  • 11. Kocakulak T., Solmaz H., Control of pre and post transmission parallel hybrid vehicles with fuzzy logic method and comparison with other power systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2269-2286, 2020.
  • 12. Kocakulak T., Solmaz H., Modelling of a serial hybrid vehicle with HCCI range extender engine, Gazi University Journal of Science Part C: Design and Technology, 8 (2), 279-292, 2020.
  • 13. Calam A., İçingür Y., The effects of air fuel ratio and octane number on HCCI combustion and engine performance characteristics, Journal of Polytechnic, 22 (3), 607-618, 2019.
  • 14. Pour A.H., Ardebili S.M.S., Sheikhdavoodi M.J., Multiobjective optimization of diesel engine performance and emissions fueled with diesel-biodiesel-fusel oil blends using response surface method, Environmental Science and Pollution Research, 25 (35), 35429-35439, 2018.
  • 15. Sedef K., Aylanşık G., Babagiray M., Kocakulak, T., Biodiesel production from waste sunflower oil and engine performance tests, International Journal of Automotive Science and Technology, 4 (4), 206-212, 2020.
  • 16. Jin C., Tang J., Ghosh P., Optimizing electric vehicle charging: A customer's perspective, IEEE Transactions on Vehicular Technology, 62 (7), 2919-2927, 2013.
  • 17. Gultekin E., Yahsi M., Investigation of lattice structures for the battery pack protection. International Journal of Automotive Science and Technology, 5 (4), 331-338, 2021.
  • 18. Yaz M., Cetin E., Built-in isolated level 1 unidirectional battery charger design aspects for a small-scale electric vehicle, International Journal of Automotive Science and Technology, 5 (4), 345-350, 2021.
  • 19. Ors İ., Sayın B., Ciniviz M., An experimental study on the comparison of the methanol addition into gasoline with the addition of ethanol, International Journal of Automotive Science and Technology, 4 (2), 59-69, 2020.
  • 20. Icingur Y., Calam A., The effects of the blends of fusel oil and gasoline on performance and emissions in a spark ignition engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 27 (1), 143-149, 2012.
  • 21. Keskin A., The effect of cottonseed oil methyl estereurodiesel fuel blends on the combustion, performance and emission characteristics of a direct injection diesel engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 915-928, 2019.
  • 22. Kaya T., Kutlar O., Taskıran O., The effects of biodiesel obtained from canola on performance, emissions and combustion characteristics under NEDC and cruise speeds, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1437-1454, 2020.
  • 23. Sezer I., Effect of nano materials additives on fuel properties and combustion characteristics, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1), 115-136, 2019.
  • 24. Uyumaz A., Aydogan B., Calam A., Aksoy F., Yılmaz E., The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI engine, Fuel, 265, 116919, 2020.
  • 25. Calam A., Aydogan B., Halis S., The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine, Fuel, 266, 117071, 2020.
  • 26. Aydogan B., Calam A., Combustion, performance and emission caracteristics of a HCCI engine fuelled with nbutanol/n-heptane blends, International Journal of Automotive Engineering and Technologies, 9 (1), 1-10, 2020.
  • 27. Calam A., Effects of the fusel oil usage in HCCI engine on combustion, performance and emission, Fuel, 262, 116503, 2020.
  • 28. Bendu H., Murugan S., Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines, Renewable and Sustainable Energy Reviews, 38, 732- 746, 2014.
  • 29. Tanaka S., Ayala F., Keck J.C., Heywood J.B., Twostage ignition in HCCI combustion and HCCI control by fuels and additives, Combustion and Flame, 132(1-2), 219-239, 2003.
  • 30. Aceves S.M., Flowers D.L., Martinez-Frias J., Smith J. R., Westbrook C.K., Pitz W.J., Dibble R., Wright J.F., Akinyemi W.C., Hessel R.P., A sequential fluidmechanic chemical-kinetic model of propane HCCI combustion, SAE Transactions, 1019-1029, 2001.
  • 31. Epping K., Aceves S., Bechtold R., Dec J.E., The potential of HCCI combustion for high efficiency and low emissions, SAE Technical Paper, 2002-01-1923, 2002.
  • 32. Dec J.E., Sjöberg, M., A parametric study of HCCI combustion-the sources of emissions at low loads and the effects of GDI fuel injection, SAE Transactions, 1119-1141, 2003.
  • 33. Amano T., Morimoto S., Kawabata Y., Modeling of the effect of air/fuel ratio and temperature distribution on HCCI engines, SAE Technical Paper, 2001-01-1024, 2001.
  • 34. Peng Z., Zhao H., Ladommatos N., Effects of air/fuel ratios and EGR rates on HCCI combustion of n-heptane, a diesel type fuel, SAE Technical Paper, 2003-01-0747, 2003.
  • 35. Bedoya I.D., Saxena S., Cadavid F.J., Dibble R.W., Wissink M., Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions, Energy Conversion and Management, 53 (1), 154-162, 2012.
  • 36. Sun Y., Reitz R.D., Modeling diesel engine NOx and soot reduction with optimized two-stage combustion, SAE Technical Paper, 2006-01-0027, 2006.
  • 37. Jia M., Peng Z.J., Xie M.Z., Numerical investigation of soot reduction potentials with diesel homogeneous charge compression ignition combustion by an improved phenomenological soot model, Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 223 (3), 395-412, 2009.
  • 38. Yilmaz E., A comparative study on the usage of RON68 and naphtha in an HCCI Engine, International Journal of Automotive Science and Technology, 4 (2), 90-97, 2020.
  • 39. Aydogan B., An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine, Energy, 192, 116600, 2020.
  • 40. Rather M., Wani M., A numerical study on the effects of exhaust gas recirculation temperature on controlling combustion and emissions of a diesel engine running on HCCI combustion mode, International Journal of Automotive Science and Technology, 2 (3), 17-27, 2018.
  • 41. Dubreuil A., Foucher F., Mounai C., Dayma G., Dagaut P., HCCI combustion: Effect of NO in EGR, Proceedings of the Combustion Institute, 31 (2), 2879- 2886, 2007.
  • 42. Polat S., Solmaz H., Yilmaz E., Calam A., Uyumaz A., Yucesu H.S., Mapping of an HCCI engine using negative valve overlap strategy, Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 42 (9), 1140-1154, 2020.
  • 43. Urushihara T., Hiraya K., Kakuhou A., Itoh T., Expansion of HCCI operating region by the combination of direct fuel injection, negative valve overlap and internal fuel reformation, SAE Transactions, 1092- 1100, 2003.
  • 44. Koopmans L., Strömberg E., Denbratt I., The influence of PRF and commercial fuels with high octane number on the auto-ignition timing of an engine operated in HCCI combustion mode with negative valve overlap, SAE Transactions, 1275-1283, 2004.
  • 45. Celebi S., Hasimoglu C., Uyumaz A., Halis S., Calam A., Solmaz H., Yilmaz E. Operating range, combustion, performance and emissions of an HCCI engine fueled with naphtha, Fuel, 283, 118828, 2021.
  • 46. Cinar C., Uyumaz A., Solmaz H., Sahin F., Polat S., Yilmaz E., Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% nheptane and 80% isooctane fuels, Fuel Processing Technology, 130, 275-281, 2015.
  • 47. Maurya R.K., Agarwal A.K., Experimental investigation of the effect of the intake air temperature and mixture quality on the combustion of a methanol and gasoline-fuelled homogeneous charge compression ignition engine, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223 (11), 1445-1458, 2009.
  • 48. Ardebili S.M.S., Calam A., Yilmaz E., Solmaz, H., A comparative analysis of the engine performance and exhaust emissions characteristics of a diesel engine fueled with mono ethylene glycol supported emulsion, Fuel, 288, 119723, 2021.
  • 49. Solmaz H., A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios, Fuel, 273, 117775, 2020.
  • 50. Calam A., Solmaz H., Yilmaz E., Icingur Y. Investigation of effect of compression ratio on combustion and exhaust emissions in a HCCI engine, Energy, 168, 1208-1216, 2019.
  • 51. Calam A., Study on the combustion characteristics of acetone/n-heptane blend and RON50 reference fuels in an HCCI engine at different compression ratios, Fuel, 271, 117646, 2020.
  • 52. Polat S., Solmaz H., Uyumaz A., Calam A., Yilmaz, E., Yucesu H.S., An Experimental research on the effects of negative valve overlap on performance and operating range in a homogeneous charge compression ignition engine with RON40 and RON60 fuels, Journal of Engineering for Gas Turbines and Power, 142 (5), 051007, 2020.
  • 53. Cinar C., Uyumaz A., Solmaz H., Topgul T., Effects of valve lift on the combustion and emissions of a HCCI gasoline engine, Energy Conversion and Management, 94, 159-168, 2015.
  • 54. Olsson J.O., Tunestål P., Johansson B., Boosting for high load HCCI, SAE Transactions, 579-588, 2004.
  • 55. Dec J. E., Yang Y., Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline, SAE International Journal of Engines, 3(1), 750-767, 2010.
  • 56. Sjoberg M., Dec J.E., Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost, SAE International Journal of Engines, 3 (1), 84-106, 2010.
  • 57. Silke E.J., Pitz W.J., Westbrook C.K., Sjöberg M., Dec J.E., Understanding the chemical effects of increased boost pressure under HCCI conditions, SAE International Journal of Fuels and Lubricants, 1 (1), 12- 25, 2009.
  • 58. Dec J.E., Yang Y., Dronniou N., Improving efficiency and using E10 for higher loads in boosted HCCI engines, SAE International Journal of Engines, 5 (3), 1009-1032, 2012.
  • 59. Koopmans L., Strömberg E., Denbratt I., The influence of PRF and commercial fuels with high octane number on the auto-ignition timing of an engine operated in HCCI combustion mode with negative valve overlap, SAE Transactions, 1275-1283, 2004.
  • 60. Ardebili S.M.S., Solmaz H., Calam A., Ipci D., Modelling of performance, emission, and combustion of an HCCI engine fueled with fusel oil-diethylether fuel blends as a renewable fuel, Fuel, 290, 120017, 2021.
  • 61. Arora J. K., Design of real-time combustion feedback system and experimental study of an RCCI engine for control, PhD diss., Michigan Technological University, 2016.
  • 62. Yao M., Zheng Z., Zhang B., Chen Z, The effect of PRF fuel octane number on HCCI operation, SAE Technical Paper, 2004-01-2992, 2004.
  • 63. He B.Q., Liu M.B., Yuan J., Zhao H., Combustion and emission characteristics of a HCCI engine fuelled with n-butanol-gasoline blends, Fuel, 108, 668-674, 2013.
  • 64. Zhao H., HCCI and CAI Engines for the Automotive Industry, Elsevier, 2007.
  • 65. Noguchi M., Tanaka Y., Tanaka T., Takeuchi Y., A study on gasoline engine combustion by observation of intermediate reactive products during combustion, SAE Transactions, 2816-2828, 1979.
  • 66. Halis S., Nacak C., Solmaz H., Yilmaz E., Yucesu H.S., Investigation of the effects of octane number on combustion characteristics and engine performance in a HCCI engine, Journal of Thermal Science and Technology, 38 (2), 99-110, 2018.
  • 67. Heywood J.B., Combustion Engine Fundamentals. 1st Edition, Estados Unidos, 1988.
  • 68. Tsurushima T., A new skeletal PRF kinetic model for HCCI combustion, Proceedings of the Combustion Institute, 32 (2), 2835-2841, 2009.
  • 69. Polat S., Solmaz H., Calam A., Yilmaz E., Estimation of the COVIMEP variation in a HCCI engine, Journal of Polytechnic, 23 (3), 721-727, 2020.
  • 70. Solmaz H., Ipci D., Control of combustıon phase with direct injection timing for different inlet temperatures in an RCCI engine, Journal of Thermal Science and Technology, 40 (2), 267-279, 2020.
APA Solmaz H, Calam A, HALİS S, Ipci D, Yılmaz E (2022). HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. , 1735 - 1749. 10.17341/gazimmfd.602742
Chicago Solmaz Hamit,Calam Alper,HALİS SERDAR,Ipci Duygu,Yılmaz Emre HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. (2022): 1735 - 1749. 10.17341/gazimmfd.602742
MLA Solmaz Hamit,Calam Alper,HALİS SERDAR,Ipci Duygu,Yılmaz Emre HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. , 2022, ss.1735 - 1749. 10.17341/gazimmfd.602742
AMA Solmaz H,Calam A,HALİS S,Ipci D,Yılmaz E HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. . 2022; 1735 - 1749. 10.17341/gazimmfd.602742
Vancouver Solmaz H,Calam A,HALİS S,Ipci D,Yılmaz E HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. . 2022; 1735 - 1749. 10.17341/gazimmfd.602742
IEEE Solmaz H,Calam A,HALİS S,Ipci D,Yılmaz E "HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi." , ss.1735 - 1749, 2022. 10.17341/gazimmfd.602742
ISNAD Solmaz, Hamit vd. "HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi". (2022), 1735-1749. https://doi.org/10.17341/gazimmfd.602742
APA Solmaz H, Calam A, HALİS S, Ipci D, Yılmaz E (2022). HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 1735 - 1749. 10.17341/gazimmfd.602742
Chicago Solmaz Hamit,Calam Alper,HALİS SERDAR,Ipci Duygu,Yılmaz Emre HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no.4 (2022): 1735 - 1749. 10.17341/gazimmfd.602742
MLA Solmaz Hamit,Calam Alper,HALİS SERDAR,Ipci Duygu,Yılmaz Emre HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.37, no.4, 2022, ss.1735 - 1749. 10.17341/gazimmfd.602742
AMA Solmaz H,Calam A,HALİS S,Ipci D,Yılmaz E HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(4): 1735 - 1749. 10.17341/gazimmfd.602742
Vancouver Solmaz H,Calam A,HALİS S,Ipci D,Yılmaz E HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(4): 1735 - 1749. 10.17341/gazimmfd.602742
IEEE Solmaz H,Calam A,HALİS S,Ipci D,Yılmaz E "HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37, ss.1735 - 1749, 2022. 10.17341/gazimmfd.602742
ISNAD Solmaz, Hamit vd. "HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (2022), 1735-1749. https://doi.org/10.17341/gazimmfd.602742