Yıl: 2021 Cilt: 38 Sayı: 4 Sayfa Aralığı: 254 - 263 Metin Dili: İngilizce DOI: 10.4274/tjh.galenos.2021.2020.0682 İndeks Tarihi: 25-05-2022

Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma

Öz:
Objective: Patient-specific induced pluripotent stem cells (iPSCs) have potential in human disease modeling and regenerative medicine. The in vitro phenotype of disease-specific iPSC-derived cells can be used to bridge the knowledge gap between clinical phenotype and molecular or cellular pathophysiology and to understand the pathology of diseases, along with further applications, such as creating new strategies for drug screening or developing novel therapeutic agents. The aim of our study was to generate iPSCs from multiple myeloma (MM) patients. Materials and Methods: Mesenchymal stem cells (MSCs) isolated from MM patients were induced for pluripotency via the Sendai virus. Fibroblasts were used as a control. Microscopic analysis was performed daily. For colony selection, live staining was done using alkaline phosphatase staining. Reprogramming experiments were confirmed by flow cytometry, immunofluorescence (IF) staining, and gene expression analyses. To confirm the spontaneous differentiation potential, an in vitro embryonic body (EB) formation assay was performed. Results: Fibroblasts and MSCs obtained from MM patients were reprogrammed using the Sendai virus, which contains reprogramming vectors with the four Yamanaka factors, Oct3/4, Sox2, Klf4, and c-Myc. Microscopic analysis revealed that the generated iPSCs possessed classical embryonic stem cell-like morphological characteristics. Reprogramming experiments further showed that both cell lines can be reprogrammed up to the pluripotent stage, which was confirmed by flow cytometry, IF staining, and gene expression analyses. Spontaneous differentiation potential was confirmed by in vitro EB formation assays. Conclusion: iPSCs have been successfully obtained from MM patients for the first time. These cells could clarify the molecular mechanisms behind this disease.
Anahtar Kelime:

Multipl Myelom Hastalarından Uyarılmış Pluripotent Kök Hücre Üretilmesi

Öz:
Amaç: Hastaya özgü uyarılmış pluripotent kök hücreler (uPKH) insan hastalık modellemesi ve rejeneratif tıpta büyük bir potansiyele sahiptir. Hastalığa özgü uPKH’den türetilen hücreler, klinik fenotip ile moleküler veya hücresel patofizyoloji arasındaki bilgi boşluğunu kapatmak ve ilaç taraması için yeni stratejiler oluşturmak ve yeni terapötik ajanlar geliştirmek gibi stratejilerle hastalık patolojilerini anlamada faydalı olacaktır. Çalışmamızın amacı multipl myelom (MM) hastalarından uPKH üretmektir. Gereç ve Yöntemler: MM hastalarından izole edilen MKH’ler Sendai virüs yoluyla uyarılarak pluripotensi aşamasına döndürülmüştür. Çalışmada fibroblastlar kontrol olarak kullanılmıştır. Her gün mikroskobik analiz yapılmış, koloni seçimi için alkalin fosfataz canlı boyaması yapılmıştır. Yeniden programlama deneyleri akış sitometrisi, immünofloresan (IF) boyama ve gen ekspresyon analizleri ile teyit edilmıştir. Spontan farklılaşma potansiyelini doğrulamak için in vitro embriyonik cisimcik (EC) oluşum deneyi yapılmıştır. Bulgular: Fibroblastlar ve MM hastalarından izole edilmiş MKH’ler; dört Yamanaka faktörü olan Oct3/4, Sox2, Klf4 ve c-Myc ile yeniden programlama vektörleri içeren Sendai virüsü kullanılarak yeniden programlanmıştır. İlk olarak, mikroskobik analiz ile üretilen uPKH’lerin klasik embriyonik kök hücre (EKH) benzeri morfolojik özelliklere sahip olduğu ortaya konmuştur. İkinci olarak, her iki hücre hattının da pluripotent aşamaya kadar yeniden programlanabildiği akış sitometrisi, IF boyama ve gen ekspresyon analizleri ile teyit edilmiştir. İn vitro embriyonik cisimcik (EC) oluşum deneyleri ile spontan farklılaşma potansiyeli gösterilmiştir. Sonuç: uPKH’ler MM hastalarından ilk kez başarıyla elde edilmiştir ve bu hücrelerin MM hastalığının arkasındaki moleküler mekanizmaları netleştirebileceği düşünülmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676.
  • 2. Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, Greber B, Moore JB. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019;10:341.
  • 3. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 2009;106:15768-15773.
  • 4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872.
  • 5. Re S, Dogan AA, Ben-Shachar D, Berger G, Werling AM, Walitza S, Grünblatt E. Improved generation of induced pluripotent stem cells from hair derived keratinocytes – A tool to study neurodevelopmental disorders as ADHD. Front Cell Neurosci 2018;12:321.
  • 6. Wang J, Gu Q, Hao J, bai D, Liu L, Zhao X, Liu Z, Wang L, Zhou Q. Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics Proteomics Bioinformatics 2013;11:304-311.
  • 7. Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X, Zitur LJ, Learish RD, Nuwaysir FE. Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 2010;29;5:e11373.
  • 8. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008;321:699-702.
  • 9. Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 2008;18:890- 894.
  • 10. Niibe K, Kawamura Y, Araki D, Morikawa S, Miura K, Suzuki S, Shimmura S, Sunabori T, Mabuchi Y, Nagari Y, Nakagawa T, Okana H, Matsuzaki Y. Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS One 2011;6:e17610.
  • 11. Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 2010;285:11227-11234.
  • 12. Jiang Z, Han Y, Cao X. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cell Mol Immunol 2014;11:17-24.
  • 13. Doss MX, Sachinidis A. Current challenges of iPSCs -based disease modeling and therapeutic implications. Cells 2019;8:403.
  • 14. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2016;16:115-130.
  • 15. Ebert AD, Liang P, Wu JC. Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 2012;60:408-416.
  • 16. Ohnuki M, Takahaski K. Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2015;370:20140367.
  • 17. Papapetrou E. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 2016;22:1392-1401.
  • 18. Rami F, Mollainezhad H, Salehi M. Induced pluripotent stem cell as a new source for cancer immunotherapy. Genet Res Int 2016;2016:3451807.
  • 19. Saito S, Lin YC, Nakamura Y, Eckner R, Kuo KK, Lin CS, Yokoyama K. Potential application of cell reprogramming techniques for cancer research. Cell Mol Life Sci 2019;76:45-65.
  • 20. Chaidos A, Barnes CP, Cowan G, May PC, Melo V, Hatjiharissi E, Papaioannou M, Harrington H, Doolittle H, Terpos E, Dimopoulos M, Abdalla S, Yarranton H, Naresh K, Foroni L, Reid A, Rahemtulla A, Stumpf M, Roberts I, Karadimitris A. Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood 2013;121: 318-328.
  • 21. Terpos E, Christoulas D, Kastritis E, Bagratuni T, Gavriatopoulou M, Roussou M, Papatheodorou A, Eleutherakis-Papaiakovou E, Kanellias N, Liakou C, Panagiotidis I, Migkou M, Kokkoris P, Moulopoulos LA, Dimopoulos MA. High levels of periostin correlate with increased fracture rate, diffuse MRI pattern, abnormal bone remodeling and advanced disease stage in patients with newly diagnosed symptomatic multiple myeloma. Blood Cancer J 2016;6:e482.
  • 22. Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 2018;8:7.
  • 23. Terpos E, Ntanasis-Stathopoulos I, Christoulas D, Bagratuni T, Bakogeorgos M, Gavriatopoulou M, Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E, Dimopoulos MA. Semaphorin 4D correlates with increased bone resorption, hypercalcemia, and disease stage in newly diagnosed patients with multiple myeloma. Blood Cancer J 2018;8:42.
  • 24. Edwards CM, Zhuang J, Mundy GR. The pathogenesis of the bone disease of multiple myeloma. Bone 2008;42:1007-1013.
  • 25. Mundy GR, Luben RA, Raisz LG, Oppenheim JJ, Buell DN. Bone-resorbing activity in supernatants from lymphoid cell lines. N Engl J Med 1974;290:867-871.
  • 26. Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon S. Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 1974;291:1041-1046.
  • 27. Fowler JA, Edwards CM, Croucher PI. Tumor-host cell interactions in the bone disease of myeloma. Bone 2011;48:121-128.
  • 28. Roodman GD. Osteoblast function in myeloma. Bone 2011;48:135-140.
  • 29. Todoerti K, Lisignoli G, Storti P, Agnelli L, Novara F,Manferdini C, Codeluppi K, Colla S, CrugnolaM, AbeltinoM, BolzoniM, Sgobba V, Facchini A, Lambertenghi-Deliliers G, Zuffardi O, Rizzoli V, Neri A, Giuliani N. Distinct transcriptional profiles characterize bone microenvironment mesenchymal cells rather than osteoblasts in relationship with multiple myeloma bone disease. Exp Hematol 2009;38:141-153.
  • 30. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003;349:2483-2494.
  • 31. Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD. Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res 2006;21:1350- 1358.
  • 32. De Bruyne E, Bos TJ, Schuit F, Van Valckenborgh E, Menu E, Thorrez L, Atadja P, Jernberg-Wiklund H, Vanderkerken K. IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood 2010;115:2430-2440.
  • 33. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T. Osteoclasts enhance myeloma cell growth and survival via cell–cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 2004;104:2484- 2491.
  • 34. Rabin N, Kyriakou C, Coulton L, Gallagher OM, Buckle C, Benjamin R, Singh N, Glassford J, Otsuki T, Nathwani AC, Croucher PI, Yong KL. A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia 2007;21:2181-2191.
  • 35. Li X, Ling W, Pennisi A, Wang Y, Khan S, Heidaran M, Pal A, Zhang X, He S, Zeitlin A, Abbot S, Faleck H, Hariri R, Shaughnessy JD Jr, van Rhee F, Nair B, Barlogie B, Epstein J, Yaccoby S. Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells 2011;29:263-273.
  • 36. Karaöz E, Okçu A, Gacar G, Sağlam O, Yürüker S, Kenar H. A comprehensive characterization study of human bone marrow MSCs with an emphasis on molecular and ultrastructural properties. J Cell Physiol 2011;226:1367- 1382.
  • 37. Karaoz E, Aksoy A, Ayhan S, Sarıboyaci AE, Kaymaz F, Kasap M. Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 2009;132:533-546.
  • 38. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 2010;28:848-855.
  • 39. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich L, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467:285- 290.
  • 40. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GTJ. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 2010;19:469-480.
  • 41. Sochackia J, Devallea S, Reisa M, Maciel RM, Paulsen BS, Brentanic H, Abreue PSB, Rehen S. Generation of iPS cell lines from schizophrenia patients using a non-integrative method. Stem Cell Res 2016;17:97-101.
  • 42. Sampaio GLA, Martins GLS, Paredes BD, Nonaka CKV, Silva KN, Rossi SEA, Santos RRD, Soares MBP, Souza BSF. Generation of an induced pluripotent stem cell line from a patient with autism spectrum disorder and SCN2A haploinsufficiency. Stem Cell Res 2019;39:101488.
  • 43. Tan X, Dai Q, Guo T, Xu J, Dai Q. Efficient generation of transgene- and feederfree induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes. Biochem Biophys Res Commun 2018;495:2490-2497.
  • 44. Adegani FJ, Langroudi L, Arefian E, Shafiee A, Dinarvand P, Soleimani M. A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Mol Biol Rep 2013;40:3693-3703.
  • 45. Papadimitriou K, Kostopoulos IV, Tsopanidou A, Orologas-Stavrou N, Kastritis E, Tsitsilonis O, Dimopoulos MA, Terpos E. Ex vivo models simulating the bone marrow environment and predicting response to therapy in multiple myeloma. Cancers (Basel) 2020;12:2006.
  • 46. Meng G, Liu S, Krawetz R, Chan M, Chernos J, Rancourt DE. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture. Stem Cells Dev 2008;17:413-422.
  • 47. Yilmaz I, Sariboyaci AE, Subasi C, Karaoz E. Differentiation potential of mouse embryonic stem cells into insulin producing cells in pancreatic islet microenvironment. Exp Clin Endocrinol Diabetes 2016;124:120-129.
APA BAŞARAN İ, Karaoz E (2021). Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. , 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
Chicago BAŞARAN İrem Yılmaz,Karaoz Erdal Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. (2021): 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
MLA BAŞARAN İrem Yılmaz,Karaoz Erdal Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. , 2021, ss.254 - 263. 10.4274/tjh.galenos.2021.2020.0682
AMA BAŞARAN İ,Karaoz E Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. . 2021; 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
Vancouver BAŞARAN İ,Karaoz E Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. . 2021; 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
IEEE BAŞARAN İ,Karaoz E "Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma." , ss.254 - 263, 2021. 10.4274/tjh.galenos.2021.2020.0682
ISNAD BAŞARAN, İrem Yılmaz - Karaoz, Erdal. "Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma". (2021), 254-263. https://doi.org/10.4274/tjh.galenos.2021.2020.0682
APA BAŞARAN İ, Karaoz E (2021). Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. Turkish Journal of Hematology, 38(4), 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
Chicago BAŞARAN İrem Yılmaz,Karaoz Erdal Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. Turkish Journal of Hematology 38, no.4 (2021): 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
MLA BAŞARAN İrem Yılmaz,Karaoz Erdal Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. Turkish Journal of Hematology, vol.38, no.4, 2021, ss.254 - 263. 10.4274/tjh.galenos.2021.2020.0682
AMA BAŞARAN İ,Karaoz E Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. Turkish Journal of Hematology. 2021; 38(4): 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
Vancouver BAŞARAN İ,Karaoz E Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma. Turkish Journal of Hematology. 2021; 38(4): 254 - 263. 10.4274/tjh.galenos.2021.2020.0682
IEEE BAŞARAN İ,Karaoz E "Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma." Turkish Journal of Hematology, 38, ss.254 - 263, 2021. 10.4274/tjh.galenos.2021.2020.0682
ISNAD BAŞARAN, İrem Yılmaz - Karaoz, Erdal. "Generation of Induced Pluripotent Stem Cells from Patients with Multiple Myeloma". Turkish Journal of Hematology 38/4 (2021), 254-263. https://doi.org/10.4274/tjh.galenos.2021.2020.0682