Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler

Yıl: 2022 Cilt: 37 Sayı: 2 Sayfa Aralığı: 1121 - 1138 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.900425 İndeks Tarihi: 29-07-2022

Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler

Öz:
Bu çalışmada, Lactarius salmonicolor biyokütlesinin tekstil boyar maddesi olan Remazol Marine Blue (RMB)'nun gideriminde biyosorbent olarak kullanımı araştırılmıştır. pH, başlangıç boya derişimi, sıcaklık, temas süresi ve biyokütlenin tekrar kullanımı gibi birçok parametre kesikli sistemde araştırılmıştır. Elde edilen verilere göre kinetik, termodinamik ve izoterm gibi bazı fizikokimyasal parametreler hesaplanarak, biyosorpsiyonun doğası aydınlatılmaya çalışılmıştır. pH: 3'de, 0,8 g/L biyosorbent miktarının kullanıldığı koşullarda 100 mg/L başlangıç RMB'nun biyosorpsiyon kapasitesi 35 ºC'de 126,57 mg/g bulunmuştur. Biyosorpsiyon yalancı-ikinci derece kinetik modele uyumlu ve kendiliğinde gerçekleşen bir proses olduğu bulunmuştur.
Anahtar Kelime: Lactarius salmonicolor Biyosorbent Remazol Marine Blue Fungal biyokütle Biyosorpsiyon

Biosorption of Remazol Marine Blue textile dye by Lactarius salmonicolor biomass: Kinetic, isothermal and thermodynamic parameters

Öz:
In this study, the usage of Lactarius salmonicolor as a biosorbent to remove a textile dye, Remazol Marine Blue (RMB). Firstly biomass was characterized then various parameters like pH, initial dye concentration, temperature, contact time, and biomass reuse were investigated in the batch system. The nature of biosorption was clarified by calculating some physicochemical parameters such as kinetic, thermodynamic and isotherm according to the obtained data. The optimum pH of RMB solution was found as 3.0. At the end of the 3 hours contact time for 100 mg/L initial RMB concentration, biosorption capacity was increased and removal percentage was decreased with increasing the temperature. Biosorption capacity was determine as 126.57 mg/g and removal percentage was determined as 61.24 % at 35℃. Biosorption was more suitable for Freundlich isotherm model, was fitted well with pseudo-second order kinetic model and found to be a spontaneous process.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Georgin J., Franco D., Drumm F.C., Grassi P., Netto M.S., Allasia D., Dotto G.L., Powdered biosorbent from the mandacaru cactus (Cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technology, 364, 584- 592, 2020.
  • 2. Göçenoğlu Sarıkaya A., Adsorptive removal of textile dye Direct Blue 9 from aqueous solution by nano-sized polymers: Kinetic and thermodynamic studies, Polish Journal of Environmental Studies, 29 (4), 1-9, 2020.
  • 3. Köktürk M., Altindağ F., Ozhan G., Çalimli M.H., Nas M.S., Textile dyes Maxilon blue 5G and reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 242, 108947, 2021.
  • 4. Göçenoğlu Sarıkaya A., Erden E., Direct Blue 2 tekstil boyar maddesinin Agaricus campestris biyokütlesi tarafından biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik çalışmalar, Erzincan University Journal of Science and Technology, 13 (1), 258-273, 2020.
  • 5. Bagheri M., Nasiri M., Bahrami B., Reactive Blue 203 dye removal using biosorbent: A study of isotherms, kinetics, and thermodynamics, Avicenna Journal of Environmental Health Engineering, 5 (2), 91-99, 2018.
  • 6. Bagheri M., Najafabadi N.R., Borna E., Removal of reactive blue 203 dye photocatalytic using ZnO nanoparticles stabilized on functionalized MWCNTs, Journal of King Saud University-Science, 32 (1), 799- 804, 2020.
  • 7. Göçenoğlu Sarıkaya A., Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris, Environmental Technology, 42 (1), 72-80, 2021.
  • 8. Puchana-Rosero A.J., Lima E.C., Ortiz-Monsalve S., Mella B., da Costa D., Poll E., Gutterres M., Fungal biomass as biosorbent for the removal of acid Blue 161 dye in aqueous solution, Environmental Science and Pollution Research, 24, 4200–4209, 2017.
  • 9. Deniz F., Zostera marina L. ile sucul ortamdan model bir sentetik azo boyanın biyolojik giderimi: Biyosorpsiyon sistem modelleme çalışmaları, Eskişehir Technical University Journal of Science and Technology C- Life Science and Biotechnology, 9 (1), 1-12, 2020.
  • 10. Kopaç T., Sulu E., Comparison of the adsorption behavior of Basic Red 46 textile dye on various activated carbons obtained from Zonguldak coal, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (3), 1227-1240, 2019.
  • 11. Erdem F., Tosun A., Ergun M., Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system, Journal of Faculty of Engineering and Architecture of Gazi University, 31 (4), 971-978, 2016.
  • 12. Erdoğdular A.O., Kılıç Apar D., Biosorption of reactive dye Remazol Ultra Red RGB by metabolically active kefir biomass, Journal of Faculty of Engineering and Architecture of Gazi University, 36 (2), 1055-1073, 2021.
  • 13. Bayazıt G., Gül Ü.D., Ünal D., Biosorption of Acid Red P-2BX by lichens as low-cost biosorbents, International Journal of Environmental Studies, 76 (4), 608-615, 2019.
  • 14. Li H.-h., Wang Y.-t., Wang Y., Wang H.-x., Sun K.-k., Lu Z.-m., Bacterial degradation of anthraquinone dyes, Journal of Zhejiang University-SCIENCE B, 20 (6), 528-540, 2019.
  • 15. Almeida E.J.R., Corso C.R., Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized, International Journal of Environmental Science and Technology, 16 (3), 1319- 1328, 2019.
  • 16. Lucas D., Castellet-Rovira F., Villagrasa M., BadiaFabregat M., Barcelo D., Vicent T., Caminal G., Sarra M., Rodriguez-Mozaz S., The role of sorption process in the removal of pharmaceuticals by fungal treatment of wastewater, Science of The Total Environment, 610- 611, 1147-1153, 2018.
  • 17. Behloul M., Lounici H., Abdi N., Drouiche N., Mameri N., Adsorption study of metribuzin pesticide on fungus Pleurotus mutilus, International Biodeterioration & Biodegradation, 119, 687-695, 2017.
  • 18. Lucas D., Badia-Fabregat M., Vicent T., Caminal G., Rodriguez-Mozaz S., Balcazar J.L., Barcelo D., Fungal treatment fort he removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater, Chemosphere, 152, 301-308, 2016.
  • 19. Grelska A., NoszczynskaM., White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater, Environmental Science and Pollution Research, 7, 39958-39976, 2020.
  • 20. Bilgin Sökmen B., Yılmazoğlu B., Tirozinaz enziminin Giresun yöresinde yetişen yenilebilir Kanlıca Mantarından (Lactarius salmonicolor) saflaştırılması ve karakterizasyonu, Karadeniz Fen Bilimleri Dergisi, 8 (2), 10-23, 2018.
  • 21. Karagöz R., Tunali Akar S., Turkyilmaz S., Celik S., Akar T., Process design and potential use of a regenerable biomagsorbent for effective decolorization process, Jounal of the Taiwan Institute of Chemical Engineers, 93, 554-565, 2018.
  • 22. Akar T., Celik S., Gorgulu Ari A., Tunali Akar S., Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption, Journal of Chemical Technology and Biotechnology, 88 (4), 680-689, 2013.
  • 23. Bozbeyoglu P., Duran C., Baltaci C., Gundogdu A., Adsorption of Methylene Blue from aqueous solution with sulfiric acid activated corn cobs: Equilibrium, kinetics, and thermodynamics assessment, Hittite Journal of Science and Engineering, 7(3), 239-256, 2020.
  • 24. Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of American Chemical Society, 40, 1361-1403, 1918.
  • 25. Freundlich H., Over the adsorption in solution, The Journal of Physical Chemistry, 57, 385, 1906.
  • 26. Temkin M.I., Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules, Zhurnal Fizicheskoi Khimii, 15, 296-332, 1941.
  • 27. Dubinin M.M., Radushkevich L.V., The equation of the characteristic curve of activated charcoal, Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331, 1947.
  • 28. Lagergren S., Zur theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga svenska vetenskapsakademiens, Handlingar, 24 (4), 1-39, 1898.
  • 29. Ho Y.S., McKay G., Sorption of dye from aqueous solution by peat, Chemical Engineering Journal, 70, 115-124, 1998.
  • 30. Mahmoud M.E., Nabil G.M., El-Mallah N.M., Bassiouny H.I., Kumar S., Abdel-Fattah T.M., Kinetics, isotherm, and thermodynamic studies of the adsorption of Reactive Red 195 a dye from water by modified switchgrass biochar adsorbent, Journal of Industrial and Engineering Chemistry, 37, 156-167, 2016.
  • 31. Akar T., Divriklioğlu M., Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies, Bioresource Technology, 101, 7271- 7277, 2010.
  • 32. Bayramoğlu G., Arıca M.Y., Biosorption of benzidine based textile dyes ‘’Direct Blue 1 and Direct Red 128’’ using native and heat-treated biomass of Trametes versicolor, Journal of Hazardous Materials, 143 (1-2), 135-143, 2007.
  • 33. Nouri H., Azin E., Kamyabi A., Moghimi H., Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater, International Journal of Environmental Science and Technology, doi: 10.1007/s13762-020-03011-5, 2020.
  • 34. Godage N.H., Gionfriddo E., Use of natural sorbents as alternative and green extractive materials: a critical review, Analytica Chimica Acta, 1125, 187-200, 2020.
  • 35. Fomina M., Gadd G.M., Biosorption: current perspectives on concept, definition and application, Bioresource Technology, 160, 3-14, 2014.
  • 36. Jiao Y., Han D., Lu Y., Rong Y., Fang L., Liu Y., Han R., Characterization of pine-sawdust pyrolytic char activated by phosporic acid through microwave irradiation and adsorption propert toward CDNB in batch mode, Desalination and Water Treatment, 77, 247-255, 2017.
  • 37. Mondal N.K., Samanta A., Dutta S., Chattoraj S., Optimization of Cr(VI) biosorption onto Aspergillus niger using 3-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies, Journal of Genetic Engineering and Biotechnology, 15, 151-160, 2017.
  • 38. Maurya N.S., Mittal A.K., Cornel P., Rother E., Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH, Bioresource Technology, 97 (3), 512-521, 2006.
  • 39. Ahmad M.A., Herawan S.G., Yusof A.A., Equilibrium, kinetics, and thermodynamics of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from Pinang Frond, International Scholarly Research Notices Mechanical Engineering, Article ID 184267, 2014.
  • 40. O’Mahony T., Guibal E., Tobin J.M., Reactive dye biosorption by Rhizops arrhizus biomass, Enzyme and Microbial Technology, 31 (4), 456-463, 2002.
  • 41. Celik S., Duman N., Sayin F., Akar S.T., Akar T., Microbial cells immobilized on natural biomatrix as a new potential ecofriendly biosorbent fort he biotreatment of reactive dyecontamination, Journal of Water Process Engineering, 39, 101731, 2021.
  • 42. Sintakindi A., Ankamwar B., Fungal biosorption as an alternative for the treatment of dyes in waste waters: a review, Environmental Technology Reviews, 10 (1), 26- 43, 2021.
  • 43. Wang X.S., Liu X., Wen L., Zhou Y., Jiang Y., Li Z., Comparison of basic dye Crystal Violet removal from aqueous solution by low-cost biosorbents, Separation Science and Technology, 43, 3712–3731, 2018.
  • 44. Sağıroğlu Cebeci M., Şentürk İ., Tarımsal atık materyal kullanılarak sucul çözeltiden Chrysoidine Y boyasının giderimi, International Journal of Multidisciplinary Studies and Innovative Technologies, 4 (1), 18-28, 2020.
  • 45. Yang J.X., Hong G.B., Adsorption behavior of modified Glossogyne tenuifolia leaves as a potential biosorbent for the removal of dyes, Journal of Molecular Liquids, 252, 289- 295, 2018.
  • 46. Dhankhar R., Hooda A., Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions, Environmental Technology, 32 (5), 467-491, 2011.
  • 47. Akthar M.N., Sastry K.S., Mohan P.M., Mechanism of metalsi on biosorption by fungal biomass, Biomaterials, 9, 21-28, 1996.
  • 48. Okur M., Removal of metal-complex dye from textile wastewaters using eggshell, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (4), 777-785, 2013.
  • 49. Okumuş Z.Ç., Doğan T.H., Biyodizeldeki suyun reçine ile uzaklaştırılması: Adsorpsiyon izotermi, kinetiği ve termodinamik incelemesi. European Journal of Science and Technology, 15, 561-570, 2019.
  • 50. Alberti G., Amendola V., Pesavento M., Biesuz R., Beyond the synthesis of novel solid phases: review on modelling of sorption phenomena, Coordination Chemistry Reviews, 256, 28-45, 2012.
  • 51. Hu Q., Zhang Z., Application of Dubinin-Radushkevich isotherm model at the solid/solution interface: A theoretical analysis, Journal of Molecular Liquids, 277, 646-648, 2019.
  • 52. Kaur S., Rani S., Mahajan R.K., Asif M., Gupta V.K., Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: kinetics, equilibirium, and thermodynamics, Journal of Industrial and Engineering Chemistry, 22, 19-27, 2015.
  • 53. Horciu I.L., Blaga A.C., Rusu L., Zaharia C., Suteu D., Biosorption of reactive dyes from aqueous media using the Bacillus sp. Residual biomass, Desalination and Water Treatment, 195, 353-360, 2020.
  • 54. Okur M., Aktı F., The removal of C.I. acid violet 90 metal-complex dye using synthetic and natural zeolite from aqueous solutions, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 677-686, 2016.
  • 55. Ayawei N., Ebelegi A.N., Wankasi D., Modelling and interpretation of adsorption isotherms, Journal of Chemistry, 2017, (Article ID 3039817), 1-11, 2017.
  • 56. Kılıç M., Çepelioğulları Ö., Özsin G., Uzun B.B., Pütün A.E., Evaluation of field debris of chickpea husk as a low-cost biosorbent for removal of methylene blue from aqueous solutions, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (4), 717-726, 2014.
  • 57. Wang J., Guo X., Adsorption kinetic models: Physical meanings, applications, and solving methods, Journal of Hazardous Materials, 390, 122156, 2020.
  • 58. Juchen P.T., Piffer H.H., Veit M.T., Gonçalves G.C., Palacio S.M., Zanette J.C., Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies, Journal of Environmental Chemical Engineering, 6 (6), 7111-7118, 2018.
  • 59. Costa da Roch R.D., Mandelli M.K.L.M., Santos W.S., Remoçao do corante ci Reactive Blue 203 utilizando Pistia stratiotes como biossorvente alternativo, Congresso Abes Fenasan, Sao Paulo-Brezilya, 2-6 Ekim, 2017.
  • 60. Karagöz R., Manyetik Lactarius salmonicolor biyokütlesi ile Reaktif sarı 2 biyosorpsiyonunun istatistiksel tasarımı, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, 2015.
  • 61. Karthik V., Sivarajasekar N., Padmanaban V. C., Nakkeeran E. ve Selvaraju N., Biosorption of xenobiotic Reactive Black B onto metabolically inactive T. harzianum biomass: optimization and equilibrium studies, International Journal of Environmental Science and Technology, 16, 3625-3636, 2019.
  • 62. Sahmoune M.N., Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents, Environmental Chemistry Letters, 17, 697- 704, 2019.
  • 63. Anastopoulos I., Kyzas G.Z., Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?, Journal of Molecular Liquids, 218, 174-185, 2016.
APA Göçenoğlu Sarıkaya A (2022). Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. , 1121 - 1138. 10.17341/gazimmfd.900425
Chicago Göçenoğlu Sarıkaya Aslı Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. (2022): 1121 - 1138. 10.17341/gazimmfd.900425
MLA Göçenoğlu Sarıkaya Aslı Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. , 2022, ss.1121 - 1138. 10.17341/gazimmfd.900425
AMA Göçenoğlu Sarıkaya A Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. . 2022; 1121 - 1138. 10.17341/gazimmfd.900425
Vancouver Göçenoğlu Sarıkaya A Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. . 2022; 1121 - 1138. 10.17341/gazimmfd.900425
IEEE Göçenoğlu Sarıkaya A "Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler." , ss.1121 - 1138, 2022. 10.17341/gazimmfd.900425
ISNAD Göçenoğlu Sarıkaya, Aslı. "Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler". (2022), 1121-1138. https://doi.org/10.17341/gazimmfd.900425
APA Göçenoğlu Sarıkaya A (2022). Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(2), 1121 - 1138. 10.17341/gazimmfd.900425
Chicago Göçenoğlu Sarıkaya Aslı Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no.2 (2022): 1121 - 1138. 10.17341/gazimmfd.900425
MLA Göçenoğlu Sarıkaya Aslı Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.37, no.2, 2022, ss.1121 - 1138. 10.17341/gazimmfd.900425
AMA Göçenoğlu Sarıkaya A Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(2): 1121 - 1138. 10.17341/gazimmfd.900425
Vancouver Göçenoğlu Sarıkaya A Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(2): 1121 - 1138. 10.17341/gazimmfd.900425
IEEE Göçenoğlu Sarıkaya A "Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37, ss.1121 - 1138, 2022. 10.17341/gazimmfd.900425
ISNAD Göçenoğlu Sarıkaya, Aslı. "Remazol Marine Blue tekstil boyasının Lactarius salmonicolor biyokütlesi ile biyosorpsiyonu: Kinetik, izotermal ve termodinamik parametreler". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/2 (2022), 1121-1138. https://doi.org/10.17341/gazimmfd.900425